PHYSICAL REVIEW E, VOLUME 65, 046145
Out-of-equilibrium thermodynamic relations in systems with aging and slow relaxation
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The experimental time scale dependence of thermodynamic relations in out-of-equilibrium systems with
aging phenomena is investigated theoretically by using only aging properties of the two-time correlation
functions and the generalized fluctuation-dissipation theorem. We show that there are two experimental time
regimes characterized by different thermal properties. In the first regime where the waiting time is much longer
than the measurement time, the principle of minimum work holds even though a system is out of equilibrium.
In the second regime where both the measurement time and the waiting time are long, the thermal properties
are completely different from properties in equilibrium. For the single-correlation-scale systems guspitas
spherical spin glasses, contrary to a fundamental assumption of thermodynamics, the work done in an infinitely
slow operation depends on the path of change of the external field even when the waiting time is infinite. On
the other hand, for the multi-correlation-scale systems such as Sherrington-Kirkpatrick model, the work done
in an infinitely slow operation is independent of the path. Our results imply that in order to describe thermo-
dynamic properties of systems with aging it is essential to consider the experimental time scales and history of
a system as a state variable is necessary.
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[. INTRODUCTION based on a dynamical description without the assumption of
ergodicity is necessary.

Glassy systems such as spin glasses and structural glassedn investigation of such anomalous dynamical behavior of
below the glass transition temperatures are out of equilibglassy systems, it was found that aging phenomena have
rium even on the macroscopic time scale. Thus, the slovyome universal properties. Theoretical analyses have sug-
dynamics of g|assy systems has been a SUbjECt of Continuoggsted that there are two time regimes characterized by dif-
interest in the past yea[ﬁ_] Experimenta"y, the anomalous ferent dynamical properties of the two-time correlation func-
dynamical behaviors are characterized by slow relaxatiofion C(t,t") and the associated linear response function
with long time tail and aging phenomena. R(t,t") [3,4]. In the first time regime where the time differ-

Among them, aging phenomena are the most striking dy€ncet—t’ is short compared tv', the dynamics looks sta-
namical behaviors as follows. Two-time quantities such adionary and the usual fluctuation-dissipation theorgdT)
the correlation function€C(t,t”) explicitly depend on the hOIdS.' On f[he other.hand, in the second time regime where
time elapsed after the quenth (the waiting time. If the the time difference is comparable t6, aging phenomena

o L . o occur, i.e.,C(t,t") depends on’ apart from dependence on
waiting timet’ is of microscopic time scale, the phenomena, ", " e
. . 2o “t—t'. In addition, it is known that the usual FDT between
are merely transient on the way of relaxation to equilibrium.

However. dependen N the waiting tim ntin v the correlationC(t,t’) and the response functioR(t,t")
OWever, dependence on e wailing ime Contnues eveRy,. 4 ne modified in a well-defined way that involves the

. . -
whent’ is so large that one-time quantities such as the magzaqca|ing of the temperatufs]. The modification was found
netization are asymptotically close to time-independent vaII0 be valid not only for mean-field models but also for other

ues([2]. Since these phenomena mean that the dynamics igassy systems: spin-glass models with finite-range interac-
not stationary, aging is a sign showing that these systems atRns[6], real spin glassed], structural glasseé8—10], and
out of equilibrium even in macroscopic time scale, i.e., seVa model of phase separatifihl]. In addition, it is known for
eral days or weeks. some glassy systems that the correlation funci@{t,t’)
These aging phenomena appear also in mean-field modedpeys the scaling law that it dependstamdt’ only through
of spin glasses and do not disappear even in the infinitthe value ofé&(t)/&(t"), where &(t) is a system dependent
waiting time limit[3,4]. In addition, the phase space of theseincreasing function of time.
models decomposes into a large number of areas separatedAging of the correlation function and the modification of
with infinitely high free energy barriers. Thus, glassy sys-FDT imply that properties of the work done by modulating
tems never reach true equilibrium and hence they are beyorah external field in an isothermal process are completely dif-
the scope of thermodynamics and equilibrium statistical meferent from properties predicted by traditional thermodynam-
chanics. Hence, in order to describe thermodynamic propeies. In addition, the existence of the two time scales implies
ties of glassy systems, out-of-equilibrium thermodynamicshat thermodynamic properties must strongly depend on ex-
perimental time scales. Hence, the experimental time scale
dependence of the thermodynamic properties of glassy sys-
*Present address: Research Institute for Applied Mechanics, Kytems should be investigated to construct out-of-equilibrium
ushu University, Kasuga 816-8580, Japan; electronic addresshermodynamics for glassy systems.
mituhiro@riam.kyushu-u.ac.jp In order to describe our results precisely, we summarize
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thermodynamics for an isothermal process. Thermodynamics

tells that when one quasistatically changes the external field

the work needed for the change is independent of a path of

changing the external field. In addition, the quasistatic work

is equal to the change of the Helmholtz free energy. When g1
the process is not quasistatic, the work is larger than the
quasistatic work. This fact is called the principle of the mini-
mum work and is derived from the second law of thermody-
namics.

We show that the properties described above do not hold
in systems with aging. More precisely, there are two experi- Ho
mental time regimes characterized by different thermal prop-
erties. The first regime is a time domain where the waiting < time
time is much longer than the time lapse of the process. We t, At
call the time lapse the measurement time. In this regime, the
principle of the minimum work holds even though a systém g, 1. The isothermal process to consider thermodynamic
is out of equilibrium. More precisely, when the process is notygperties when aging occurs. The temperature of the heat bath is
infinitely slow, the work needed for the process is larger tharyecreased in a small field, to a subcritical temperature at time 0.
the work for an infinitely slow process. In addition, value Of fter a waiting timet,,, the field begins to change according to a
the work for the infinitely slow process depends only on thegiyen time dependends,+H(t). This change of the field contin-
initial state and the final state and hence it can play the rolges for a period ofAt. The waiting timet,, and the measurement
of a free energy. _ _ _ time At characterize the experimental time scales.

The second regime is the experimental time regime where
the length of the measurement time are comparable to that gferve aging phenomena is through the following field cool-
the waiting time. In this 'regime, .for thg single-correlation- ing process(Fig. 1). The temperature of the heat bath is
scale systems such psspin spherical spin glasses the work gecreased in a small field, to a subcritical temperature at
done in an infinitely slow operation depends on the path ofjne 0. After a waiting timet,, the field begins to change
changing the field even when the waiting time is infinite. ccording to a given time-dependenet,+H(t). This

This property forms a striking contrast to the consequence o hange of the field continues for a period &f. The initial

traditional thermodynamics described above. On the othe - —t \— -
hand, for the multi-correlation-scale systems such asénd final values oft(t) are H(t=t,)=0 and H(t=t,

Sherrington-Kirkpatrick model, the work done in an infi- +At.)_AH' We refer toAt, the time lapse of_t_he change of
nitely slow operation is independent of the path. the field, as the mgasurement tlme. The Wa|t|r!g ttman(_j

In Sec. II, we describe an isothermal process considerell€ measurement timgt characterize the experimental time
in this paper and introduce the two time regimes that charScales. o o
acterize the experimental time scales and play a significant When the field is so weak that the response is linear, the
role in this paper. In Sec. Ill, we see that in the first timeWork W done on the sample during the process is given in
regime, usual thermodynamic relations hold even though théerms of the response functid®(t,t") by
system is out of equilibrium. The only difference is that the
value of the work in an infinitely slow operation; is dif- We — th*Atdth(t) M(D) 2.0
ferent from that of the change of the free energy calculated ty dt ' '
from equilibrium statistical mechanics. In Sec. IV, we
present general discussion on properties of the Wdgkn an ~ where the “magnetizationM(t) is given by
infinitely slow operation in the second time regime and de- o .
rive conditions whetwWg depends on the path of changing the _ / , , /
external field. In Sec. V, by using the results obtained in the M(®) J,wdt R(LE)Ho+ fodt R(t,t)Ho
previous section, we show that for the single-correlation-
scale systems the work in an infinitely slow operation de-
pends on the path of changing the external field as a conse-
guence of aging. Possibility of observation of this path-
dependence is also discussed. In addition, we show that f@ince we are interested in long waiting time behavior, the
the multi-correlation-scale systemd; is not path dependent. contribution of the first term of Eq(2.2) is ignored. For
Our results are summarized in Sec. VI, where implications ofeasibility of showing long-time behavior, we rewrite Eq.
our results on thermodynamics of glassy systems and exper(2.2) by integration by part to expredd(t) in terms of a
mental protocols to observe quasiequilibrium properties argusceptibilityx(t,t’) instead of the response function;
discussed.

AH

+ftdt’R(t,t’)H(t’). (2.2
tW

ty+At dH(t)
II. AN ISOTHERMAL PROCESS AND TWO TIME W=—Ho ¢ dtT)((t,O)
REGIMES "
We describe an isothermal process to consider thermody- _ ftW+Atdth(t)ft dt,dH(t )X(t,t’), 2.3
namic properties when aging occurs. A simple way to ob- tw dt Jy, dt’
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where the susceptibility is defined as This implies no TTI and this time regime is called the aging
regime. In addition, it is known that in the aging regime the
t . .
X(t,t’)Ef dv'R(t,t"). (2.4) FDT is modified as
t/
X[C(t,t")] aC(t,t")

In order to discuss the dependence of the work on the R(t,t")= T ,
B at’

waiting time and the measurement time, we rewrite the ex-
pression of the work by the transformations—s=(t o ) )
—t,)/At, H(t)—h(s)=H(sAt+t,)/AH. We assume that where the FDT violation factoX is a function that depends

dh(s)/ds andd®h(s)/ds? are finite, in order to exclude the ONL.t" only through the dependence of the correlation func-
unrealistic cases where the speed and the acceleration B¢n C(t.t") [4]. Thus, a system cannot be considered to be
changing the field is infinity. For example, the path such adn @ quasiequilibrium state, since the usual FDT is strongly
h(s)= s is excluded, sincalh(s)/ds and d?h(s)/ds? are violated. When only one correlation scale exists apart from

(2.9

infinite ats=0. t_he quasiequilibrium regime, it is known that the FDT viola-
Thus, the work is reduced to tion factor is a constant. _ _ _
In order to clarify the meaning of the time region of the
1 dh(s) aging regime {—t’'~t'), we give an explicit expression of
W/(AH)?=—Hy/AH io ds ds x(sAt+t,,0) aging of the correlation function as
1 dh(sy) (s dh(sy) lim C(r+t',t')=limC[ 7+ ug(7),ug(7)]=C(n),
—f ds; ds, o T
o~ dst Jo ds, w=t'Ig(7

(2.9
XX(SlAt‘i'tW,SzAt‘i'tW), (25)

o ‘whereg(t) is a system dependent function that characterizes
which implies that the dependence of the work on the experithe aging regime and is the time differencet—t’. The

mental time scales is determined by that of the susceptibility, : L L
Since the first term of Eq.(2.5 becomes a constant correlation functionC(ux) depends on the waiting timg

~ Hyy(,0)/AH in the long waiting time limit that we are through the value of.. Occurrence of aging means that the

interested in, we will analyze properties of the second termimiting function C(x) takes a nontrivial value such that 0
of Eq. (2.5, i.e., the work done in the zero-field cooling <C(u)<q. Here, q is the dynamical Edwards-Anderson
process Ky=0), in the rest of this paper for simplicity; ~ (EA) order parameter. Thus, the time region of the aging
regime is the time region wheté/g(t—t") is finite. Here,
dh(sy) (st dh(s,) we assume thak andg(7) are positive.
ds, Jo 22 ds, x(s:At This definition of aging is illustrated in terms of contour
plot of the correlation function omr—t’ plain [Fig. 2(@)].
+1t,,SAt+t,). (2.6 The plot when aging occurs is completely different from that
when aging does not occ[ffig. 2(b)]. The contour lines give
In order to discuss behavior of the susceptibility whenthe system dependent functia(t) that characterizes the
aging occurs, we recapitulate the Iong—time behavior of th%.gmg regime’ since the contour lines are given Iby
response function referred to in the previous section. It is=t’/g(7) in the contour plot.
known that there are two time regimes characterized by dif- \We show two examples of the functigift) and the aging
ferent behavior of the correlation functid®(t,t') and the regime for systems such as spherical spin glasses and real

1
W/(AH)?= —f ds;
0

FDT[5]. _ spin glasses. In these systems, it is known that the correlation
At long-timest andt’ such that —t"<t’, the correlation  function behaves as a function &ft)/£(t"), where the scal-
function is the function of only the time differente-t’, i.e.,  ing function &(t) is a system dependent functi¢a]. The

the time-translational invariand@TI) holds. In addition, al-  function g(t) is given in terms of &t) as g (t)
though the Sample is out of equilibrium, the usual FDT holds— g_l[ré‘(t)]_t, wherer is a constant |arger than unity_ The

[12] as inverse function of(t) exists sinces(t) is a monotonically
) increasing function.
1 oC(t—t' =
Rt—t)= — 2=t 2.7 (1) When £(t) =t,
keT 4t
&+t o+t rtur 1+pu
whereC(r) is defined as lim _ C(r+t,t). Since the prop- lim ) = lim " = lim ar p
erties of two-time quantities in this time regime are the same  n=t'/r u=t'l7
as that in equilibrium, this time regime is called the quasi- (2.10

equilibrium regime. . Lo :
Whereas, at long and well-separated times such that Thus, I'mﬂlﬁf,,c(ﬂ't ') is a function ofy and hence the

—t'~t’, aging occurs, i.e., the two-time correlation function aging regime is the time regime wheré = is finite.
C(t,t') depends ort’ even in the long-time limit’—oo. (2) When &(t) = exd (t/75)}/(1— @) (0<a<1),
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400 - ___
S/ -C=0.7q 1 (e

tt)=+— dCX(C 2.1
X = |, dCX©) (213

where X is the FDT violation factor defined by E¢.9). It
implies that the susceptibility is a function of the correlation
function.

Since the difference of the two arguments of the suscep-
tibility in Eq. (2.6) is (s;—S,)At, there are also two-time
regimes characterized by different dependence of the work

v 200 [

0 : ' . .
100 200 300 400 on the experimental time scalé¢ andt,, .
(@) ¢ When the waiting time is much longer than the measure-
ment time At<t,), the susceptibility that appears in Eg.
400 . . (2.6) obeys EQ.(2.12 since 6;—sy)At<s,At+t,, holds.
ETB' Hence, from Eqs(2.6) and(2.12) the work in this regime is
c-0. written as
&5 cO) 1 [t dh(s)
'; ) 2_ _ L Sl
~ 300 | c=e WIAR)"= 2kBT+kBTLd L ds,
S1 dh(SZ)
xf ds, Cl(s;—sy)At]. (2.19
0 ds,
200 : :
b 200 . 300 400 In the derivation,
FIG. 2. (a) The contour plot onr—t’ plain of the correlation fl dh(sy) = Szdh(SZ) =1/2 (2.15
function when aging occur€(t,t’')=q(t'/t)*(v=0.25), which is ds; Jo ds,

the correlation function in the aging regime for the five-spin spheri-

cal spin-glass model. The plot when aging occurs is completeifor any pathh(s) is used.

different from that when aging does not occur in that the contour On the other hand, when both the waiting time and the

lines are not parallel to the horizontal axis. This contour plot givesmeasurement time are longA{~t,), the susceptibility

the system dependent functigt) that characterizes the aging obeys Eq(2.13 since 6;—s,)At~s,At+t,, holds[14]. In

regime as a contour line of the correlation function, i.e.,  this regime, it is seen from Eq2.13 that the work is a

=t'/g(7). The straight contour lines in this figure imply thg@¢7)  functional of the correlation function that shows aging. The

is a linear function ofr. (b) The contour plot when aging does not ambiguous relation,,~ At is described explicitly in Sec. IV

occur; C(7+t',t")=exfg —71y]. Since the value of the correlation with the functiong(t) defined in Eq(2.9).

fun_ction doeg not depend dn, the contour lines are parallel to the We refer to the former case as the quasiequilibrium re-

horizontal axis. gime and the latter case as the aging regime without any
confusion with the time regimes characterized by the behav-

. E(T+1)) 4 ior of the correlation and the response function.
lim WZEX[XTS Mmoo, (2.1)
M:T:/,jl/a Ill. THE WORK IN THE QUASIEQUILIBRIUM REGIME

. R . In this section, we investigate the properties of the work
Thus, I'mﬂj;,iuac("ﬂ ') is afunction ofu and hence the - yqne o the sample when the measurement tinés short

aging regime is the time regime whet 7/« is finite. compared to the long waiting tintg, (the quasiequilibrium
From these results, it is shown by the definition of theregime.

susceptibility Eq(2.4) that the behavior of the susceptibility

depends on the time regimes according to the dependence of A. The work done in a slow process

the behavior of the response function. In the quasiequilib-

rium regime, the susceptibility depends only on the time dif-  First, we derive the work done in a slow operation such
ferencer=t—t’ and is given by the correlation function as that the measurement tim¥t is so long that the correlation

function relaxes to a time-independent value. This process is
1 formulated by taking the infinite measurement time limit
x(7)=— ——=[C(7)—C(0)] (2.12  At—x. Glassy systems are out of equilibrium even in such
kgT an infinitely slow process. Hence, we call a process where
the external field is changed infinitely slowly a “slow pro-
whereC(r)=limy _,.., C(7+t',t"). Whereas, in the aging re- cess” instead of a “quasistatic process.”
gime, TTI does not hold and the susceptibility is given by the  Since for the slow process the time lapse of the process is
correlation function as infinity, the work done in the slow process in the quasiequi-

046145-4



OUT-OF-EQUILIBRIUM THERMODYNAMIC RELATIONS . ..

librium regime is given by taking the limiAt— oo after tak-
ing the infinite waiting time limit of Eq.(2.14). Since the
integrand, the correlation function, is finite, the order of limit
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(AH)?

AFeq=— m(<A2>eq— (AYes

(3.5

and integration can be changed. Thus, we can write the WOI’\lﬂ,here<<A>§q>J is the usual EA order parameter. Since ergod-

W, for the slow process as

W/(AH)?= lim lim W/(AH)?

At—o ty—®

icity is broken for glassy systems, the phase space decom-
poses into many pure states. Assuming that ), denotes
the thermal average in local equilibrium in the pure state

andF, denotes the free energy at the pure statee see that

__CO, 1 (. dn(sy
2kgT ' kgTJo * ds, (A2) o= PEYAZ),, (3.6
Sy h
xf dszd (52) i Cl(s;—s,)At]. 2
0 dS; Ar—e (A= X qu<A>a) : (3.7)

(3.)
where P$% is the probability that the system is found at
the pure statea in true equilibrium and is given byg?
=exp(—pF)/Z

In order to compar&Vs, Eq.(3.3), with AFq, Eq.(3.5),
we rewrite Eq.(3.3) in terms of pure states. Since the corre-
lation function is given byC(t,t’)=((A(t)A(t"))); and the
local equilibrium in pure states is achieved in the long-time
limit,

Here, in order to give the expression of the wivk, we
introduce the dynamical EA order parameter defined as

g=lim lim C(7+ty,t,).

T—00 tw—}x

(3.2

Using Eq.(2.15 and the above definition, the wolk, for
the slow process is given by

(AH)?

C(0)= lim (A(t")?)),=2 PY(A%a);, (38

(3.3 T 5
Therefore, the work for the slow process in the quasiequilib-
rium regime is the difference of a state function, since the
right-hand side of Eq(3.3) is independent of the path of
changing the fieldh(s) and dependent only on the thermo- o
dynamic variablesAH andT) and constants intrinsic to the whereP}" is the probability that the system is found in pure
system[C(0) andq]. It is important to note that this prop- statea at time 0. Since the system is out of equilibrium at
erty is derived by using only the FDT. time 0, P59 PY" . Thus,((A%).y); is not equal toC(0). In

On the other hand, for usual systems apart from glassyddition, from Eqgs(3.7) and (3.9, <<A>gq>J is not equal to
SyStemS, one may eXpeCt that equi”brium is USUa”y achieveq_ Consequen“y, we conclude that the ng for the slow
whent,, is long (ty,—=). So, thermodynamics can be ap- process does not coincide with the free energy difference

plied and the work for the slow process is equal to thecalculated by statistical mechanics with assumption of ergod-
change of the Helmholtz free energyF,, calculated by icity.

equilibrium statistical mechanics. However, we show below
that this naive expectation fails for glassy systems. More
precisely, the work for the slow process, E8.3), is differ- ) ]
ent from the change of the Helmholtz free energy calculated We discuss the properties of the work when the measure-
by equilibrium statistical mechanics. It is because the glaszg‘e”t time is finite. From Eq$2.14) and(3.3), the difference

systems are out of equilibrium even when the waiting time isoetween the work when the process is not slow and the work

g=lim lim ((A(r+t)A));=>, PI(A2);,

T—=% Lo a

(3.9

B. The work when the measurement time is finite

infinite.

Assuming thatA(t) is a physical quantity coupled to the
external fieldH (t) linearly, we see from statistical mechan-
ics with the assumption of ergodicity that the isothermal sus-

ceptibility 1 is given by

1
xT=kB—T<<A2>eq— (AYas, (3.9

for the slow process is given by
_(AH)2 1 dh(sl)fsl dh(s,)
W e ) e
X{C[(s1—sz)At]—q}. (3.10

Cl[(s;—sy)At]>q whenAt is finite, since the quasiequilib-
rium regime is considered. Hence, the difference from the

work for the slow process is positive for any path of chang-

where (- - -)¢q denotes average over the Gibbs-Boltzmanning the field, when the measurement time is finite. This im-
distribution and(- - -), denotes disorder average. Thus, theplies the principle of minimum work;
free energy differencAF., due to changé H of the exter-

nal field is W=Wg, (3.1)
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where the equality holds only when the measurement time is (AH)2 1 dh(s))
infinite, i.e., the slow-process limit. W—Wg= KT CJ Sld—
. e B 0 S1
Our result is very similar to the consequence of thermo-
dynamics, which tells that the work for nonquasistatic pro- s dh(sy 1 1
cess is larger than the change of the Helmholtz free energy. f S, 2 . (3.1
However, our result is different from that and beyond the 0 ds; (s;—s,)" (AD)®

scope of thermodynamics since in our discussion the initial

state and the final state of the process are out of equilibriunm this case, the difference from/s obeys the power law

and the value of the work for the slow process is differentwhose exponent is equal to the exponent of the correlation

from the value of change in the Helmholtz free energy defunction.

rived by equilibrium statistical mechanics. (4) When the correlation function obeys the logarithmic
relaxationC(7)=q+c/In(7), the difference also obeys the

C. Long measurement time behavior ofW—Wg logarithmic relaxation as

The long measurement time behavior\0f—W; is ana- )
lyzed in this subsection. We show that the behavioMof _ :(AH) ¢
—W, when the measurement timit is long but finite is 9 2kgT In(At)
determined by the long-time behavior of the correlation
function. We describe below, the results for four types of
behavior of the correlation function that include almost all
types of relaxation of the correlation, e.g., the exponential
the power law[{15], the logarithmic[16], and the stretched
exponential relaxatiohl7]. The derivations are given in the
Appendix.

(1)  When the correlation function behaves
lim 7 C(7)—q]=0, the difference is given by

T—®

In(In At)
(InAt)?

. (3.1

In this case, the difference does not depend on the lp@h

Experimentally, these results tell how long the measure-
ment should take and the suitable path of changing the ex-
ternal field in order to determine the value of the work for
the slow process, i.e., the difference of a state function in
asquasiequilibrium regime.

IV. THE WORK IN THE AGING REGIME:
2q GENERAL RESULTS
(3.12

At In this section, we discuss the properties of the work in
the isothermal slow process when both the waiting time and
the measurement time are long, i.e., in the aging regime, by
using the modified FDT and aging of the correlation function
introduced in Eqs(2.8) and(2.9). Condition when the work

_ |- _ for the slow process depends on the path changing the exter-

Km_fo drC(r)~a] (313 nal field is obtained. By using the results obtained in this

section, the path dependence of the work for particular sys-

etems is discussed in Sec. V.

~(AH)2 1 |dh(s)
 kgT wf ds

W— W,
0

where

and W denotes the work for the slow process. This cas
includes the power law relaxation such th&{(7)=q
+cr “whena>1 and the stretched exponential relaxation A. Path dependence of the work for the slow process
[exp(—a7r"),0<n<1] as well as the exponential relaxation
[18].

(2) When the correlation function behaves
Iimhoc 71C(7) —q]=c, the difference is given by

As shown in Sec. Il, in the aging regime the work is a
functional of the correlation function that shows aging. The
8Sslow process of the aging regime is given by taking the long

measurement time limiAt— oo with holding the relatiort,,

~At, which guarantees that the slow-process limit is taken
2In(At) within the aging regime. The slow-process limit has always
—. (319 this meaning in this section.

At The order of the slow-process limit and the integration

can be changed since the susceptibijitys finite. From Eqg.

These two results show tha&V— W is proportional to the (2.6) the workWj for the slow process in the aging regime is
inverse of the measurement time only when lim7[C(r) ~ 9VeN by

=T ¢

(AH)? (1 |dh(s)
B fo ds

—q]=0. In these two cases, the difference from the work for 5 1
the slow process takes the minimum value when the field =~ Ws/(AH)"=— fo ds;
increases linearly ds(s) =s, since we assume thdh(s)/ds

dh(s;) fsld dh(s,)
ds, ds,

andd?h(s)/ds? is finite. X x[ lim C(s;At+t,,,S,At+1t,)].
(3) When the correlation function obeys the power law At—oo
relaxation, such tha€(7)=qg+cr “(0<a<1), the differ- fw At
ence is given by 4.1
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Thus, the dependence of Iticm:ﬁ C(s;At+t,,S,At+t,) on

s, and s, determines the dependence of the work for the
slow process on the path of changing the fib(@); Ws is
independent oh(s) if Iimtmij[ C(s;At+t,,,s,At+t,) does

not depend ors; ands,. On the other handVy is a func-
tional of h(s) if Iimtmijt C(s;At+t,,,s,At+t,) depends on

s, ands,. We derive conditions whew depends oi(s) in

the rest of this section. 10° . - - -
In order to analyze li Wt:’A“} C(s;At+t,,,S,At+1,), we 0 002 004 006 008 01
clarify the meaning of,,~ At or the aging regime by using R
g(7) in Eqg. (2.9. By substitutiont’ —s,At+t,,, 7—(s; FIG. 3. The schematic illustration of the four types of the long-

—s,)At in Eqg. (2.9, we see that the following equation time behavior of the functiog(7). For exampleg(7)=In 7 (type

holds in the region except for the poist=s,, which does 1), g(7)=r7 (type 2, g(7)=172 (type 3, g(7)=expr (type 4 are

not contribute to the value of the work by itself: plotted against X. It is important to note that these four types
exhaust all possibilities of long-time behavior.

lim C(siAt+ty,,SAt+t,)=C(u). _ .
At (51 G w=Cw) as At—o sincet,>0. An example of suchy(7) is g(7)
w=(SpAt+1t,)/g[(51—Sp)At] 42 =In7. When g(7)=In7 and s,#0, Ilim, _(s;At

+t,)/9[(s;—s,)At]= as shown in Eq(4.3). Since the
point s,=0 does not contribute to the value of the work by
itself, the experimental time regime wheres,At
k 2= 2 . +tw/gl(s;—s,)At] is finite does not exist in this case. If
nite _and the slqw-process .I|m|t of thg correla_tlon function iNhere is no other aging regime except for that characterized
the integrand in Eq(4.1) is a function of l'"?;tfﬁ(SZAt by suchg(r) exists, only the quasiequilibrium regime con-
+1t,)/9[ (51— ;) At]. tributes to the value of the work and hence the work for the
We discuss below the aging regimes and dependence 6fow process is independent df(s) and is given by
limat—= C(s;At+t,,,S,At+1,) ons; ands, in four cases of EQ. (3.3).
w2 (2) Wheng(7)=r,

This equation implies that the aging regime is the experi
mental time regime wheresfAt+t,)/g[(s;—Sy)At] is fi-

the different long-time behaviors gft) that exhaust all pos-
sibilities (see Fig. 3.
(1) When IimHoc 7/1g(7) =00, t'/g(t—t") is finite only in

the regiont’ <t—t’. In the region of integration of Ed4.1)
except for the poins,=0,

S,At+t, SAt+t,  Sy+t, /At

Ol(s1—Sp)At]  (s;—Sp)At -5,

(4.9

Thus, from Eq(4.2), lim Ate C(s;At+t,,,SAt+t,) isa
M=ty 1L

(SAt+1,)/g[(s1—Sy)At]— o0 (4.3)  function of (s,+u')/(S1—5S2);
|
. . NS
lim C(s;At+1t,,,SAt+t,)= lim C(s;At+t,,,5At+t,)=C . (4.5
At—oo At—soo S$1—%2
n' =ty /At (so+ 1) (5= 50) = (SpAt+1y)/g[(51—5) At]
|
It implies that the aging regime is the region whegéAt is S,At+1,, S,At+t, g(At)
finite. In this aging regime the slow-process limit of the cor- a[(si—S)At]  9(AD  gl(Si—SyAL]

relation function in the integrand of E4.1) depends ors;
ands, if f(w) in Eq.(4.2) is not a constant. It means that the tw
work for the slow processWs, depends on the path of ~ 5ap 9 (517 %2), (4.6)
. g(At)
change of the external field(s).
(3) When lim _ 7/g(r)=0 and lim__ g(7)/g(s7)

T— 0

as At—o. An example of suctg(7) is g(7)=7%(a>1).
=¢,(s)(s<1) exists, Wheng(7)=71* (a>1), Eq.(4.6) holds,
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S,At+t, ty 1
— — 4.7
gl(si—sx)At]  g(Al) (s,—s,)”
asAt—co. From Eqgs.(4.2) and(4.6),
lim  C(s;At+t,,,S,At+t,)= lim C(s;At+t,,SAt+t,)=Clu'g,(51—S5)]. (4.8
At—oo At—oo
w' =ty /g(At) w'gr(s1—53) = (SpAt+1,)/g[(sy—5) At]

It implies that the aging regime is the region whgég(At) equal to 0, the work for the slow process depends on the path
is finite. In this aging regime the slow-process limit of the of changing the external field(s). In this case, contrary to
correlation function in the integrand of E@t.1) is a function  the fundamental assumption of thermodynamics, the work

of s; ands, if f(u) in EQ. (4.2 is not a constant. It means for the slow process is not the difference of a state function.
that the workW; depends or(s).

(4 When IimT_mo 7/g(7)=0 and IimT_mo g(7)/g(s7)
=oo(s<1), we prove below that the aging regime for experi- V. THE WORK IN THE AGING REGIME: RESULTS FOR

mental time scales doew®t exist. We assume that the aging SINGLE-CORRELATION-SCALE SYSTEMS AND

regime exists. It means that a functip(t) exists such that MULTI-CORRELATION-SCALE SYSTEMS

lim ;A[tjgo(Al)(szAt+tW)/g[(sl—sz)At] is finite. Then, from

theﬂcovFldition “mT_m 7g(7)=0, It has been explicitly checked on several disordered mod-

els that in the long-time limit two situations with different

SAL+T,, t, dynamical behavior seem to ex|i].

im ————* - |im —x There are systems with only one correlation scale apart
at—e  Il(S17S2)AL] e 9l(S17S2)AL] from the quasiequilibrium regime, which we call “single-
#=tw/P(AY) #=talP(AD correlation-scale systems.” For these systems, the correlation

wp(At) function scales a€(t,t’)=C[&(t)/£(t')] and the FDT vio-
= lim ———————=. (4.9 lation factorX is a constant. Equilibrium states of these sys-

S1—Sy)At]”
st OL(S17S2)AL] tems are solved by a one step replica symmetry breaking

ansatz. Examples are tpespin spherical spin glassg3| and

a Lennard-Jones binary mixture, which is a model of struc-
tural glasses in a glassy stdf. The real spin glasses such
as AgMn seem to belong to this class since it is known that

Assuming thats; —s;>s;—s,, we see from the condition
lim__ _g(7)/g(s7)=(s<1) that

) S,At+t, ) s,At+t, the correlation function is scaled with single scaling function
im —————— Im —— £(t)
At L(SI=S)AL] o g[(s]—sp)At] : _ _
=ty /p(At) =ty /p(At) There are systems such as Sherrington-Kirkpat¢®K)
., model that have an infinite number of correlation scales apart
= lim pP(AY  gl(s;—s;)At] from the quasiequilibrium regimigt], which we call “multi-
atow 9L(S1—S)At]  up(At) correlation-scale systems.” For these systems, ultrametricity
o, in time holds for any correlation such th&(t,t")<q;
i gl(s1—sy)At] C(t,t3)=min[C(t; tp),Clto,ts)] when t;>t,>t; and tg
Atoe 9[(S1—S)At] —oo0, The FDT violation factorX is a nontrivial function of
C. Equilibrium properties of these systems are solved by a
=00, (4.10  full replica-symmetry breaking ansatz.

) ) ) In this section, we analyze the path dependence of the
Since Eqg. (4.10 contradicts the assumption that

- e : work for the slow process in the aging regime for these two
l'm#:%v‘jpTM)(SZAt+tw)/g[(sl_SZ)M] is finite, the aging re-  ¢|asses of systems by using the general results obtained in

gime for experimental time scales dawst exist in this case. Sec. IV. It is important to note that only these two classes of
Hence, if only this aging regime characterized by sg¢t) ~ Systems seem to exikt].
exists, "”3“351 C(s,At+t,,,S,At+t,) is equal to 0 om. It
implies that the work is independent ofs). An example of
suchg(t) is g(t) =expt).

Consequently, we conclude that if there are aging regimes For the single-correlation-scale systems, scaling of the

Eharacterized by(7) of case 2, or case 3, and the function correlation functionC(t,t’')=C[£(t)/&(t’)] holds. Hence,
C(w) is not a constant and the FDT violation fackis not  the work for the slow process in the aging regime is given as

A. The single-correlation-scale systems
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i SU 1 C(0)—
W/AHZ:—fdshsfdhs e _ / a _ q
s/(AH) . dst (s1) , 4% (S2) x(t,t)= kBTe”c(t,t )+ e T
 f(siAttt,) ©9
xxlcl im ——*1|. .1 . L
Atoe S(SAL+1T,) where C(0)=lim,,_,., C(t',t"). Hence, from Eq(4.1), the
ty~At work for the slow process is given by

Three explicit choices of the scaling functig(t) have been ) C(0)—q 1
proposed so far;&(t)=t,&(t) =exd(Um)' “(1—a)] and  Ws/(AH)"=— SkeT kgl
E(t) =exdIn®(t/7p)] [1]. We analyze below the properties of B

the work for the slow process for each three cases. 1 dh(s)) (s1 dh(sp) _
(1) When &(t)=t, the correlation function decays in Xf dsi—g S gs, 4~ ImC
power law as found in the trap modg0] and thep-spin 0 10 =2 t“jft
spherical spin glass¢8]. The slow-process limit of the cor- "
relation function in Eq(5.1) depends ors, ands, as X[E&(sAt+1y)/ E(sAt+ty) ]} (5.6
(s At+t,) St u Since Iin}njgot C(s;At+t,,,5,At+t,)<q when s;#s,,
A':Tx E(S,At+t,) Syt (5.2 the second term on the right-hand side is nonzero. Hence, if
=t /At Tef is finite the work for the slow process is not the differ-
ence of a state function since the work depends on the path
This is an example of Eq4.5) in the preceding section. of changing the fieldh(s). In addition, the value of the work

(2) When&(t) =exd 1/(1— a) (t/79) 1~ *](a<1) [21], the s different from the value of the work for the slow process in
slow-process limit of the correlation function in E(p.1) the quasiequilibrium reg_ime:_the first term on the ri_ght-hand
depends ors; ands, through the scaling function that be- side of Eq.(5.6). In addition, it is also shown that since the
haves as correlation function is positive and smaller than the dynami-

cal EA order parameter in this regime, there are bounds for
- £(s;At+t,) e P s the value of the quasistatic work as
Aow  S(S2At+1Ty) 75 © v

n=ty, 1At

. (5.3

C0-q 4 _ W, _ C(0)-q
2keT  2kgTe'f (AH)2  2kgT

(5.7

This is an example of Eq4.9). . . . o
(3) When g(?)zexp[ﬁla(t3ro)](a>1) [25], the slow- Equation(5.7) shows that the workV; in the aging regime is

process limit of the correlation function that appears in qumdependent of the path of changing the field and coincides

. . with the work Wy in the quasiequilibrium regime when the
E)Séﬁ)asggzgds ors, ands, through the scaling function that e .o temperaturd®’ is infinite, which holds for the

two-spin spherical spin-glass modg7] and a model of

£(sjAt+ty,) phase separatioi1].

A|t||'n mzex;{aﬂ(sl—sz)]. (54)

B. Possibility of observation of path dependence
w=At/(t,Int "3, )

In the preceding subsection, we saw that the work for the
slow process depends on the path of changing the external

This is another example of E4.8) :
; . _field whenAt~t,,. We show here that the path dependence
To my knowledge, only three types of the scaling funcuonof the work for the slow process is strong enough to be

&(t) discussed above are known so far for single-correlation- . . ;
scale systems. For each of three cases the slow-process li Se“’?d In experiments by_ evaluating the path dependence
of the five-spin spherical spin-glass model.

of the correlation function in the integrand of Ed.1) is a First q e th | oi £ inf i
function of s; ands,. It means for the single-correlation- érsd, twev Iesct:rl Eeqs 6)6 If‘?vﬁgawﬂ'?ﬁetstho In ﬁ;mmfon
scale systems that the work for the slow process in the agin cede IOt('a a;;a et' g h tSh '?t’ _ at,/teyscad tgho
regime depends on the path of changing the external fiel g dﬁgg; ElgOanLijt?\CtL%né?f:ztive?(te(n’]pgr_atclt(re i)e agﬁ 8)9
h(s) and contrary to the assumption of thermodynamics th_ old for the mode[3]. WhenkgT/J=0.2[28], y~0.25 has

){/ivgr:k for the slow process is not a difference of a state funcbeen obtained. The dynamical EA parametend the effec-
) tive temperature are given hy=0.929 andT/T®¢'=0.227

In order to see more explicit form of the work for the slow henkaT/J—0.2. | tation of th | h
process in the aging regime, we introduce the modified FD'&’;”?]Z':S_ —VY.2. In computation ot these values, we use the

Eqg. (2.8) with constant violation factoX, which has been

verified to be valid for the single-correlation-scale systems

[4]. 9*(1-q)*= :
From Eq.(2.8), the susceptibility is given by 10 Teff q
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(1) When g(7)=7, by substitutiont;—t,t,—u't,t3
§ —ut in Eq. (5.8) and assuming that’ > u, we see that
© 0.10
2L lIimC(t,ut)=min[ imC(t,u't), IimC(u't,ut)].

.-6 t—o t—oo t—oo
-02> (5.9
= 005
o Hence,
®
L
= i .
0.00 ' ' imC(u't,ut)= lim C| u't, —pu't|=C(uln'),
0 5 10 o Wit u'
t /At (5.10

FIG. 4. The relative difference between the works for the two > .
paths h(s) =s andh(s) =s?] of changing the field infinitely slowly Wherec(’“):hmtaw C(t,u1). Thus, from Eq(5.9),
is plotted against the ratio of the waiting time to the measurement
time for the five-spin spherical spin-glass model. The path depen- C(w)=minC(u"),C(ulu')]. (5.11)
dence of the work for the slow process in the aging regime is strong
enough to be observed in simulations for the model. In addition, wex: o .
see tﬁat the path dependence becomes larger, as one increases%kllrtlace itimplies that
measurement time with keeping the waiting time fixed. . 2
e Clulp") i u'=>u,
In order to evaluate the magnitude of the path depen- () Clu) otherwise,
dence, we compute the relative difgerence between the works
for two paths[h(s)=s andh(s)=s?], which is defined as & : . ' g
the difference between the works for the two paths dividedC(’u) 's a constant and hence IVIE?'/TC(TH )
by the average of the two works. The results obtained from=C[ v/(1+ »)] is a constant.
Eq. (5.6) are as follows. When the ratio of the measurement (2) When lim 7/g(7)=0 and lim__g(7)/g(s7)
time to the waiting time isl:1, therelative difference is " T
equal to 0.037, i.e., about 4%. When the raticbid, the
relative difference is equal to 0.094, i.e., about 9%.
Hence, we can say that the path dependence of the work im  C(r+t/ t)=min[ lim C(r+t't')
in the slow process can be observed for the five-spin spheri- e ' o o
cal spin-glass model. The relative difference is plotted w=t'Ig(7) u=t'1g(7)
against the ratio of the waiting time to the measurement time . .
in Fig. 4. It tells that contrary to intuition the path depen- ITL Clar+t',t)], (513
dence becomes larger, as one increases the measurement ,u,:Tt'/g(T)
time with keeping the waiting time fixed.

(5.12

=g,(s)(s<1) exists, the ultrametric relation E¢5.8) is
written as

wherea is a constant such that<Ga<1. The second argu-

C. The multi-correlation-scale systems ment of min in Eq.(5.13 is rewritten as

For the multi-correlation-scale systems such as SK model, im C(ar+t',t')= lim C(ar+t',t')
it is known that the ultrametricity in time holds for all cor- o ’ 00 '
relations such tha€(t,t’)<q in the long-time limit[4], p=t"lg(n) w=t'lg(arla)

= lim C(r+t',t")

T—®

n=t"l/g(rla)

= lm  C(r+t't)

T— 0

C(tl ,tg) = m|n[C(t]_ 1t2)!C(t2 ,t3)] when t1>t2>t3 .
(5.9

By using this ultrametric relation E¢5.8), we prove be-

low that the correlation function in the aging regime is a w=t"1[g,(a)g(7)]
constant in the two casegase 2 and case 3 in Sec.)IV ) L
where the work for the slow process can depend on the path = lim C(r+t',t")

T— %

of changing the external fielth(s). Thus, for these two gy (a)=t"1g(7)

cases, the work for the slow process is independent of the

path h(s). It has been proven in Sec. IV for the other two =C[ng,(a)], (5.14
cases that the work for the slow process cannot depend on

h(s). Thus, the work for the slow process for the multi- = N Vo - ) s
correlation-scale systems is independent of the path o\f\/herec(’“)_“mﬂjf,gmc(TH ). Similarly, the first ar
changing the field in all the experimental time regimes. gument of min in Eq(5.13 is rewritten as
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lim C(r+t',ar+t’)= lim C(r+t',ar+t’) system since there is possibility that there is an infinite num-
T T ber of experimental time regimes characterized by different
w=t9(7) p=(t"+anlg(n) values of the work for the slow process. In order to attack on
= lim C[(1-a)r+t',t"] this problem, information on time scale of the aging regime
T of multi-correlation-scale systems beyond time reparametri-

n=t'lg(r) zation invariance is necessdi39].
=C[ug,(1—a)] (5.15 It is important to note that these results have a much

broader range of validity, because they were derived without
where the last equality is shown from E€5.14). Conse- any assumption on microscopic properties of a system.
quently, We consider the implications of our results on thermody-
namics for systems with aging. In the quasiequilibrium re-
o) = minf Ol _ P gime, our results are the same as the consequences of ther-
C(u)=min{C[ ug,(1—a)],Cl[ug,(a)]}. (5.16 modynamics, where the work for the slow process is
. — . Lo independent of the path of changing the external field and the
Since g,(a)>1, C(“)=“mﬂjf,;°(,)c(7+t ') s a con- workpfor a nonslowpprocess is I%rgger than that for the slow
stant. process. The only discrepancy is the difference between the
We proved above only that the correlation function is avalue of the work for the slow process and that of the free
constant within a correlation-scale since ultrametricity inenergy obtained by statistical mechanics with the assumption
time is valid within a correlation scale. On the other hand,of ergodicity. However, this discrepancy does not mean that
even for the multi-correlation-scale systems, the value of théhe framework of usual thermodynamics is invalid since the
correlation function becomes 0 when the time difference idree energy can be defined by the work for the slow process.
much larger than the waiting time. So, value of the correla-This suggests that the usual framework of thermodynamics is
tion function must depend on an infinite number of correla-valid in the quasiequilibrium regime even though the system
tion scales. Hence, there is possibility that there is an infinités out of equilibrium.
number of experimental time regimes characterized by dif- We considered only the properties of the work in the lin-

ferent values of the work for the slow process. ear response regime. Thus, in order to prove validity of usual
thermodynamics in the quasiequilibrium regime, the relation
V1. DISCUSSION AND CONCLUSIONS between the heat and the entropy has to be considered and

extension of our analysis outside the linear response regime

Summarizing our results, for systems with aging we havenhas to be performed. For these purposes, it would be inter-
considered the experimental time scale dependence of thssting to analyze Langevin dynamics of spin-glass models
work exerted by modulating the external field in an isother-with stochastic energetidd9,30.
mal process. We have shown that there are two experimental Since the work for the slow process in the quasiequilib-
time regimes characterized by different behavior of the workrium regime is independent of history of a system in linear
In the quasiequilibrium regimeAt<t,,), the work for the response regime, it gives a fundamental state function for
slow process is independent of the path of changing the exhermodynamics in the quasiequilibrium regime and is worth
ternal field and the value of the work for the slow process isheing measured in experiments. We discussed an experiment
different from the change of the Helmholtz free energy ob-to measure it. Our results in Sec. Ill for the measurement
tained by statistical mechanics with the assumption of ergodtime dependence of the work shows how long measurement
icity. When the process is not infinitely slow, the differencetime is needed to reach the expected accuracy.
between the work for nonslow process and the work for the However, since the waiting time can be long but should
slow process is positive for any path of changing the field be finite in reality, the measurement time has to be finite in
i.e., the principle of minimum work holds. In addition, we order to keep the experimental time scale in the quasiequi-
derived the dependence of the difference on the measuremditirium regime. Otherwise the value of the work does not
time from the long-time behaviors of the correlation func-come close to that of the work for the slow process in the
tion. quasiequilibrium regime since the experimental time scale is

In the aging regime At~t,), whose precise meaning is in the aging regime. Hence, one cannot expect that the value
given in Sec. IV, contrary to a fundamental assumption ofof the measured work coincides with that of the work for the
thermodynamics, the work exerted in the slow process on thelow process with arbitrary accuracy. In other words, the
single-correlation-scale systems for which the FDT violationaccuracy of measurement of the state function is bounded by
factorXis not equal to O depends on the path of changing the¢he length of the waiting time.
external field. It was examined that for the five-spin spherical On the other hand, in the aging regime, our results imply
spin-glass model the magnitude of the path dependence that in contrast to the usual framework of thermodynamics it
strong enough to be observed in experiments. The conditionis essential to consider the experimental time scales such as
when the work for the slow process depends on the path ithe waiting time and the measurement time. Furthermore,
also derived generally. On the other hand, for the multi-history of a system as a state variable is necessary to describe
correlation-scale systems, the work for the slow process ithermodynamic properties of glassy materials. Although con-
independent of the path of changing the field. However, thestructing thermodynamics for the aging regime is a tough
work for the slow process still may depend on history of awork, it is a fruitful and challenging problem to be investi-
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gated since some universal properties in the aging regime are keT

known[5]. Recently, a framework of thermodynamics for the lim At—z(W— Wy

aging regime when the temperature changes in time has been At—oe H)

proposed31]. The framework avoids treating the problem of 1 dh(sy)

path dependence by fixing a path to change the temperature. = lim f ds, {h’(O)K(slAt)

It is not clear whether thermodynamics for a single path to At—oc 0 ds,

change the temperature is useful. Its validity and usefulness 5

should be checked. + fo dszh”(sl—sz)K(szAt)}. (A3)
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Sasa, Yoshihisa Miyamoto, Hajime Takayama, Koji Huku- lim At 2(W—qu)szf ds ds | (A4)
shima, and Hitoshi Inoue. At H) 0

whereK ., is defined by Eq(3.13. Consequently, it is proved
that the proportional constant is finite and the deviation is
proportional to 1At.

Next, we consider the deviation when [ignmt[C(t)

APPENDIX: DERIVATION OF THE LONG
MEASUREMENT TIME BEHAVIOR OF W-—Wg

In this appendix, we derive the long measurement time_
behavior of the deviation from the work for the slow process
for four types of relaxation of the correlation function de-
scribed in Sec. Il C.

g] is equal to a finite value. In order to prove that the
eviation is proportional to IAt/At, we show that the pro-
portional constant is finite. Dividing the region of integration
of Eqg. (A2) into five regions, the proportional constant is

given by
1. The case where |i t[C(t)—q] exists
... ttem—al A keT(W- Wy
In this section, we treat the case where limt[C(t) A:TOC INAt (AH)?

—q] exists, which includes the two cases where

; AT Fnik 1 1At
lim, _t[C(t)—q] is equal to O and where the limit is equal — Iim h’(O)J ds,h’ (s)K(s;A1)
to a finite valuec. At INAT 0
We rewrite the deviation given by E(3.10 by introduc- )
ing K(t) defined as _,_hr(o)f ds;h’(sp)K(s;At)
1/At
t
K(t)sf d7[C(7)—q]. (A1) /At s
0 +f dslh’(sl)f ds,h”(s1—s,)K(S,At)
0 0
o 1 /At
The deviation is reduced to +f dslh’(sl)f ds,h"(s;—s,)K(s,At)
1/At 0
1 s1
kgT (W—W,) 1 J'ld dh(sy) h (0)K(s,AD) +L/Atdslh'(sl)fllAtdSzh"(Sl—Sz)K(SzAt) :
- =— s s
2 as’ " At 1 ds 1
(AH) 0 1 (AS5)
S1
+ J; dSzh"(Sl—Sz)K(Szm)} We discuss the behavior of the functit(sAt) in each

region. Whens=<1/At, from the definition ofK(t), Eq.
(A2) (3.13, it is shown that

1
At first, we consider the deviation when lim_t[C(t) K(SMKJ'O drC(7)—q]. (A6)

—q] is equal to 0. Here, in order to prove that the deviation

is proportional to the inverse of the measurement tite ~ Thus,K(sAt) is finite even whem\t—o. On the other hand,
we show that the proportional constant is finite. The proporwhens>1/At, we express the functiok(sAt) by using a
tional constant is given as function defined a€£(t) —q=c/t+f(t), t=1:
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sAt At first, we treat the case where the correlation function
K(SAt)=f drC(7)—q] behaves at a long-time &8(7)=q+c/7 *,0<a<1. We

0 divide the region of integration of the third term of E&\9)
into three regions as

1 d Sl—(At)ia B 1 Sq
s ds,= | ds;| ds,
(At) 0 0 0

St
o (7)

=JoldT[C(T)—q]+LSMdT

1 sAt
:J dT[c(T)—q]+cIns+clnAt+J’ drf(7).
0 1

J’(At)’ad Jsld
(A7) 0 51 0 %2
Since Iirq tf(t) =0, the fourth term on the right-hand side J’l q J’Sl q
— 0 - S
is finite even whemt is infinite. Thus, the behavior of the (a)~2 ' s;—(At)~2 %2

function is given asK(sAt)=cIn At when s>1/At. By
evaluating the each term of EGA5) with using the above
behavior of the functionK(sAt), it is straightforward to  Since all the integrands are finite, it is shown that the last two

(A10)

show that terms are bounded by
At kgT dh(s)|2 |the second terfrs consix (At) (2~ a)~«
lim ——Z(W—qu)=cJ ds . (A8)
Atoe INAL (AH) 0 ds and
Consequently, it is proved that the proportional constant is |the third termsconsM(At)‘“‘a(l‘“).
finite.

On the other hand, by using the long-time behavior of the

2. The case where lim__ t[C(t)—q] does not exist correlation function, the first term is given as

In this section, we treat the case where limt[C(t) fld dh(sy) (s1 . dh(sy) c 1

S, .
—q] does not exist, which includes the two types of long- o ds; Jo ds; (S1—5)" (At)”
time behavior of the correlation function, such th@afr) (Al1)

=q+c/7% 0<a<l1l andC(7)=q+c/InT. . . . Ca .

In order to find out the leading term in the behavior for;rhus' we fm? thf"‘t Ith's tertrr? @[tgm) 1. Assuming that;[rr]\et
the long measurement time, we divide the region of integra-ree parametea is larger than the exponent, one sees tha
tion of Eq. (3.10 into three regions as the Ieadmg term is EqQA11) by comparing the orders of all

the terms in Egqs(A9) and(A10). Hence, the long measure-

1 s (A2 s ment time behavior of the deviation is given by Eg§.15).
fo dslfo ds,= Jl) d%fo ds, Next, we consider the case where the long-time behavior
of the correlation function is given by (7)=q+c/Inr.
1 s Again, we start by evaluating the third term on the right-hand
+f _adslf s side of Eq.(A9). By using the long-time behavior of the
an s (80 correlation function, the term is given by
1 _ —a
Hds [T e, ) 1 dh(sy) (st dh(sy)
(at~2 0 J 7ad31 ds dszd—
(A1) 1 Jo S

where we assume that the paramedesatisfies G<a<<1.

Since all the integrand@he time derivative of the field and X )
the correlation functionare finite, it can be shown that the In(s;—sp) +In At
first two terms on the right-hand side are bounded as

Cc

(A12)

Since in the region of integration the following inequality
|the first termi< constx (At) ~22 holds:

In(s1—s7)
—_— <

In At

and

|the second terhseconst< (At) 31— (At)~?]. . )
by neglecting numbers aD(a/In At) the third term of the

In addition, we notice that sincg,<s,—(At) "2 in the re-  right-hand side of Eq(A9) is reduced to
gion of integration of the third term,s{—s,)At is large

when the measurement tind is large. Thus, the third term fl dsldh(sl) s—(ap)a SQM _°
is determined by the long-time behavior of the correlation (At)~2 ds; Jo ds, InAt
function. (A13)
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Furthermore, by neglecting numbers@f(At) “?/In At], the terms ofa the order of the neglected terms are given as

term is reduced to O(al/ln At) andO[ (At) 2], we can determine the value af
so that the value of the neglected terms are minimized. Thus,

fl S dh(sy) (s dh(sy) ¢ __ ¢ (A14) assuming that the neglected term is given bw/In At

o tods Jo 2 ds, InAt 2InAt’ +B(At)"® where @ and B8 are constants, the value afis

determined by

Consequently, one sees that the leading term is the above g
one by comparing the orders of all the terms in H4®) and a _
(A10). Thus, the long measurement time behavior of the de- da “M+E(At) °|1=0. (A15)
viation is given by Eq(3.16).

Finally, in order to determine the order of the neglectedSince the solution i®=2 In(In At)/In At, one sees that the
term we determine the value of the free parametesince  order of neglected term i©[In(In At)/(In At)?] as shown in
the neglected term contains the free paramateBince in  Eq. (3.16.
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