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Out-of-equilibrium thermodynamic relations in systems with aging and slow relaxation
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The experimental time scale dependence of thermodynamic relations in out-of-equilibrium systems with
aging phenomena is investigated theoretically by using only aging properties of the two-time correlation
functions and the generalized fluctuation-dissipation theorem. We show that there are two experimental time
regimes characterized by different thermal properties. In the first regime where the waiting time is much longer
than the measurement time, the principle of minimum work holds even though a system is out of equilibrium.
In the second regime where both the measurement time and the waiting time are long, the thermal properties
are completely different from properties in equilibrium. For the single-correlation-scale systems such asp-spin
spherical spin glasses, contrary to a fundamental assumption of thermodynamics, the work done in an infinitely
slow operation depends on the path of change of the external field even when the waiting time is infinite. On
the other hand, for the multi-correlation-scale systems such as Sherrington-Kirkpatrick model, the work done
in an infinitely slow operation is independent of the path. Our results imply that in order to describe thermo-
dynamic properties of systems with aging it is essential to consider the experimental time scales and history of
a system as a state variable is necessary.
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I. INTRODUCTION

Glassy systems such as spin glasses and structural gl
below the glass transition temperatures are out of equ
rium even on the macroscopic time scale. Thus, the s
dynamics of glassy systems has been a subject of contin
interest in the past years@1#. Experimentally, the anomalou
dynamical behaviors are characterized by slow relaxa
with long time tail and aging phenomena.

Among them, aging phenomena are the most striking
namical behaviors as follows. Two-time quantities such
the correlation functionsC(t,t8) explicitly depend on the
time elapsed after the quencht8 ~the waiting time!. If the
waiting time t8 is of microscopic time scale, the phenome
are merely transient on the way of relaxation to equilibriu
However, dependence on the waiting time continues e
whent8 is so large that one-time quantities such as the m
netization are asymptotically close to time-independent v
ues @2#. Since these phenomena mean that the dynamic
not stationary, aging is a sign showing that these systems
out of equilibrium even in macroscopic time scale, i.e., s
eral days or weeks.

These aging phenomena appear also in mean-field mo
of spin glasses and do not disappear even in the infi
waiting time limit @3,4#. In addition, the phase space of the
models decomposes into a large number of areas sepa
with infinitely high free energy barriers. Thus, glassy sy
tems never reach true equilibrium and hence they are bey
the scope of thermodynamics and equilibrium statistical m
chanics. Hence, in order to describe thermodynamic pro
ties of glassy systems, out-of-equilibrium thermodynam
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based on a dynamical description without the assumption
ergodicity is necessary.

In investigation of such anomalous dynamical behavior
glassy systems, it was found that aging phenomena h
some universal properties. Theoretical analyses have
gested that there are two time regimes characterized by
ferent dynamical properties of the two-time correlation fun
tion C(t,t8) and the associated linear response funct
R(t,t8) @3,4#. In the first time regime where the time diffe
encet2t8 is short compared tot8, the dynamics looks sta
tionary and the usual fluctuation-dissipation theorem~FDT!
holds. On the other hand, in the second time regime wh
the time difference is comparable tot8, aging phenomena
occur, i.e.,C(t,t8) depends ont8 apart from dependence o
t2t8. In addition, it is known that the usual FDT betwee
the correlationC(t,t8) and the response functionR(t,t8)
should be modified in a well-defined way that involves t
rescaling of the temperature@5#. The modification was found
to be valid not only for mean-field models but also for oth
glassy systems: spin-glass models with finite-range inte
tions @6#, real spin glasses@7#, structural glasses@8–10#, and
a model of phase separation@11#. In addition, it is known for
some glassy systems that the correlation functionC(t,t8)
obeys the scaling law that it depends ont andt8 only through
the value ofj(t)/j(t8), wherej(t) is a system dependen
increasing function of time.

Aging of the correlation function and the modification
FDT imply that properties of the work done by modulatin
an external field in an isothermal process are completely
ferent from properties predicted by traditional thermodyna
ics. In addition, the existence of the two time scales impl
that thermodynamic properties must strongly depend on
perimental time scales. Hence, the experimental time s
dependence of the thermodynamic properties of glassy
tems should be investigated to construct out-of-equilibri
thermodynamics for glassy systems.

In order to describe our results precisely, we summar

y-
s:
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MITSUHIRO KAWASAKI PHYSICAL REVIEW E 65 046145
thermodynamics for an isothermal process. Thermodynam
tells that when one quasistatically changes the external
the work needed for the change is independent of a pat
changing the external field. In addition, the quasistatic w
is equal to the change of the Helmholtz free energy. Wh
the process is not quasistatic, the work is larger than
quasistatic work. This fact is called the principle of the min
mum work and is derived from the second law of thermod
namics.

We show that the properties described above do not h
in systems with aging. More precisely, there are two exp
mental time regimes characterized by different thermal pr
erties. The first regime is a time domain where the wait
time is much longer than the time lapse of the process.
call the time lapse the measurement time. In this regime,
principle of the minimum work holds even though a syste
is out of equilibrium. More precisely, when the process is
infinitely slow, the work needed for the process is larger th
the work for an infinitely slow process. In addition, value
the work for the infinitely slow process depends only on
initial state and the final state and hence it can play the
of a free energy.

The second regime is the experimental time regime wh
the length of the measurement time are comparable to th
the waiting time. In this regime, for the single-correlatio
scale systems such asp-spin spherical spin glasses the wo
done in an infinitely slow operation depends on the path
changing the field even when the waiting time is infini
This property forms a striking contrast to the consequenc
traditional thermodynamics described above. On the o
hand, for the multi-correlation-scale systems such
Sherrington-Kirkpatrick model, the work done in an in
nitely slow operation is independent of the path.

In Sec. II, we describe an isothermal process conside
in this paper and introduce the two time regimes that ch
acterize the experimental time scales and play a signific
role in this paper. In Sec. III, we see that in the first tim
regime, usual thermodynamic relations hold even though
system is out of equilibrium. The only difference is that t
value of the work in an infinitely slow operationWs is dif-
ferent from that of the change of the free energy calcula
from equilibrium statistical mechanics. In Sec. IV, w
present general discussion on properties of the workWs in an
infinitely slow operation in the second time regime and d
rive conditions whenWs depends on the path of changing t
external field. In Sec. V, by using the results obtained in
previous section, we show that for the single-correlatio
scale systems the work in an infinitely slow operation d
pends on the path of changing the external field as a co
quence of aging. Possibility of observation of this pa
dependence is also discussed. In addition, we show tha
the multi-correlation-scale systemsWs is not path dependent
Our results are summarized in Sec. VI, where implications
our results on thermodynamics of glassy systems and ex
mental protocols to observe quasiequilibrium properties
discussed.

II. AN ISOTHERMAL PROCESS AND TWO TIME
REGIMES

We describe an isothermal process to consider thermo
namic properties when aging occurs. A simple way to o
04614
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serve aging phenomena is through the following field co
ing process~Fig. 1!. The temperature of the heat bath
decreased in a small fieldH0 to a subcritical temperature a
time 0. After a waiting timetw the field begins to change
according to a given time-dependenceH01H(t). This
change of the field continues for a period ofDt. The initial
and final values ofH(t) are H(t5tw)50 and H(t5tw
1Dt)5DH. We refer toDt, the time lapse of the change o
the field, as the measurement time. The waiting timetw and
the measurement timeDt characterize the experimental tim
scales.

When the field is so weak that the response is linear,
work W done on the sample during the process is given
terms of the response functionR(t,t8) by

W52E
tw

tw1Dt

dt
dH~ t !

dt
M ~ t !, ~2.1!

where the ‘‘magnetization’’M (t) is given by

M ~ t !5E
2`

0

dt8R~ t,t8!H01E
0

t

dt8R~ t,t8!H0

1E
tw

t

dt8R~ t,t8!H~ t8!. ~2.2!

Since we are interested in long waiting time behavior,
contribution of the first term of Eq.~2.2! is ignored. For
feasibility of showing long-time behavior, we rewrite E
~2.2! by integration by part to expressM (t) in terms of a
susceptibilityx(t,t8) instead of the response function;

W52H0E
tw

tw1Dt

dt
dH~ t !

dt
x~ t,0!

2E
tw

tw1Dt

dt
dH~ t !

dt E
tw

t

dt8
dH~ t8!

dt8
x~ t,t8!, ~2.3!

FIG. 1. The isothermal process to consider thermodyna
properties when aging occurs. The temperature of the heat ba
decreased in a small fieldH0 to a subcritical temperature at time 0
After a waiting timetw , the field begins to change according to
given time dependenceH01H(t). This change of the field contin
ues for a period ofDt. The waiting timetw and the measuremen
time Dt characterize the experimental time scales.
5-2
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where the susceptibility is defined as

x~ t,t8![E
t8

t

dt9R~ t,t9!. ~2.4!

In order to discuss the dependence of the work on
waiting time and the measurement time, we rewrite the
pression of the work by the transformations:t→s[(t
2tw)/Dt, H(t)→h(s)[H(sDt1tw)/DH. We assume tha
dh(s)/ds andd2h(s)/ds2 are finite, in order to exclude th
unrealistic cases where the speed and the acceleratio
changing the field is infinity. For example, the path such
h(s)5As is excluded, sincedh(s)/ds and d2h(s)/ds2 are
infinite at s50.

Thus, the work is reduced to

W/~DH !252H0 /DHE
0

1

ds
dh~s!

ds
x~sDt1tw,0!

2E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2

3x~s1Dt1tw ,s2Dt1tw!, ~2.5!

which implies that the dependence of the work on the exp
mental time scales is determined by that of the susceptibi
Since the first term of Eq.~2.5! becomes a constan
2H0x(`,0)/DH in the long waiting time limit that we are
interested in, we will analyze properties of the second te
of Eq. ~2.5!, i.e., the work done in the zero-field coolin
process (H050), in the rest of this paper for simplicity;

W/~DH !252E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2
x~s1Dt

1tw ,s2Dt1tw!. ~2.6!

In order to discuss behavior of the susceptibility wh
aging occurs, we recapitulate the long-time behavior of
response function referred to in the previous section. I
known that there are two time regimes characterized by
ferent behavior of the correlation functionC(t,t8) and the
FDT @5#.

At long-timest andt8 such thatt2t8!t8, the correlation
function is the function of only the time differencet2t8, i.e.,
the time-translational invariance~TTI! holds. In addition, al-
though the sample is out of equilibrium, the usual FDT ho
@12# as

R~ t2t8!5
1

kBT

]C~ t2t8!

]t8
, ~2.7!

whereC(t) is defined as lim
t→`

C(t1t,t). Since the prop-

erties of two-time quantities in this time regime are the sa
as that in equilibrium, this time regime is called the qua
equilibrium regime.

Whereas, at long and well-separated times such tht
2t8;t8, aging occurs, i.e., the two-time correlation functio
C(t,t8) depends ont8 even in the long-time limitt8→`.
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This implies no TTI and this time regime is called the agi
regime. In addition, it is known that in the aging regime t
FDT is modified as

R~ t,t8!5
X@C~ t,t8!#

kBT

]C~ t,t8!

]t8
, ~2.8!

where the FDT violation factorX is a function that depend
on t,t8 only through the dependence of the correlation fun
tion C(t,t8) @4#. Thus, a system cannot be considered to
in a quasiequilibrium state, since the usual FDT is stron
violated. When only one correlation scale exists apart fr
the quasiequilibrium regime, it is known that the FDT viol
tion factor is a constant.

In order to clarify the meaning of the time region of th
aging regime (t2t8;t8), we give an explicit expression o
aging of the correlation function as

lim
t→`

m5t8/g(t)

C~t1t8,t8!5 lim
t→`

C@t1mg~t!,mg~t!#[Ĉ~m!,

~2.9!

whereg(t) is a system dependent function that characteri
the aging regime andt is the time differencet2t8. The
correlation functionĈ(m) depends on the waiting timet8
through the value ofm. Occurrence of aging means that th
limiting function Ĉ(m) takes a nontrivial value such that
,Ĉ(m),q. Here, q is the dynamical Edwards-Anderso
~EA! order parameter. Thus, the time region of the ag
regime is the time region wheret8/g(t2t8) is finite. Here,
we assume thatm andg(t) are positive.

This definition of aging is illustrated in terms of contou
plot of the correlation function ont2t8 plain @Fig. 2~a!#.
The plot when aging occurs is completely different from th
when aging does not occur@Fig. 2~b!#. The contour lines give
the system dependent functiong(t) that characterizes the
aging regime, since the contour lines are given bym
5t8/g(t) in the contour plot.

We show two examples of the functiong(t) and the aging
regime for systems such as spherical spin glasses and
spin glasses. In these systems, it is known that the correla
function behaves as a function ofj(t)/j(t8), where the scal-
ing function j(t) is a system dependent function@1#. The
function g(t) is given in terms of j(t) as g21(t)
5j21@r j(t)#2t, wherer is a constant larger than unity. Th
inverse function ofj(t) exists sincej(t) is a monotonically
increasing function.

~1! Whenj(t)5t,

lim
t→`

m5t8/t

j~t1t8!

j~ t8!
5 lim

t→`
m5t8/t

t1t8

t8
5 lim

t→`

t1mt

mt
5

11m

m
.

~2.10!

Thus, lim t→`
m5t8/t

C(t1t8,t8) is a function ofm and hence the

aging regime is the time regime wheret8/t is finite.
~2! Whenj(t)5exp@(t/t0)

12a/(12a)#(0,a,1),
5-3
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lim
t→`

m5t8/t1/a

j~t1t8!

j~ t8!
5exp~t0

a21m2a!. ~2.11!

Thus, lim t→`

m5t8/t1/a
C(t1t8,t8) is a function ofm and hence the

aging regime is the time regime whent8/t1/a is finite.
From these results, it is shown by the definition of t

susceptibility Eq.~2.4! that the behavior of the susceptibilit
depends on the time regimes according to the dependen
the behavior of the response function. In the quasiequi
rium regime, the susceptibility depends only on the time d
ferencet[t2t8 and is given by the correlation function a

x~t!52
1

kBT
@C~t!2C~0!# ~2.12!

whereC(t)[ limt8→` C(t1t8,t8). Whereas, in the aging re
gime, TTI does not hold and the susceptibility is given by t
correlation function as

FIG. 2. ~a! The contour plot ont2t8 plain of the correlation
function when aging occurs;C(t,t8)5q(t8/t)g(g50.25), which is
the correlation function in the aging regime for the five-spin sph
cal spin-glass model. The plot when aging occurs is comple
different from that when aging does not occur in that the cont
lines are not parallel to the horizontal axis. This contour plot giv
the system dependent functiong(t) that characterizes the agin
regime as a contour line of the correlation function, i.e.,m
5t8/g(t). The straight contour lines in this figure imply thatg(t)
is a linear function oft. ~b! The contour plot when aging does n
occur;C(t1t8,t8)5exp@2t/t0#. Since the value of the correlatio
function does not depend ont8, the contour lines are parallel to th
horizontal axis.
04614
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x~ t,t8!5
1

kBTEC(t,t8)

C(t,t)

dCX~C! ~2.13!

whereX is the FDT violation factor defined by Eq.~2.8!. It
implies that the susceptibility is a function of the correlati
function.

Since the difference of the two arguments of the susc
tibility in Eq. ~2.6! is (s12s2)Dt, there are also two-time
regimes characterized by different dependence of the w
on the experimental time scalesDt and tw .

When the waiting time is much longer than the measu
ment time (Dt!tw), the susceptibility that appears in E
~2.6! obeys Eq.~2.12! since (s12s2)Dt!s2Dt1tw holds.
Hence, from Eqs.~2.6! and~2.12! the work in this regime is
written as

W/~DH !252
C~0!

2kBT
1

1

kBTE0

1

ds1

dh~s1!

ds1

3E
0

s1
ds2

dh~s2!

ds2
C@~s12s2!Dt#. ~2.14!

In the derivation,

E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2
51/2 ~2.15!

for any pathh(s) is used.
On the other hand, when both the waiting time and

measurement time are long (Dt;tw), the susceptibility
obeys Eq.~2.13! since (s12s2)Dt;s2Dt1tw holds@14#. In
this regime, it is seen from Eq.~2.13! that the work is a
functional of the correlation function that shows aging. T
ambiguous relationtw;Dt is described explicitly in Sec. IV
with the functiong(t) defined in Eq.~2.9!.

We refer to the former case as the quasiequilibrium
gime and the latter case as the aging regime without
confusion with the time regimes characterized by the beh
ior of the correlation and the response function.

III. THE WORK IN THE QUASIEQUILIBRIUM REGIME

In this section, we investigate the properties of the wo
done on the sample when the measurement timeDt is short
compared to the long waiting timetw ~the quasiequilibrium
regime!.

A. The work done in a slow process

First, we derive the work done in a slow operation su
that the measurement timeDt is so long that the correlation
function relaxes to a time-independent value. This proces
formulated by taking the infinite measurement time lim
Dt→`. Glassy systems are out of equilibrium even in su
an infinitely slow process. Hence, we call a process wh
the external field is changed infinitely slowly a ‘‘slow pro
cess’’ instead of a ‘‘quasistatic process.’’

Since for the slow process the time lapse of the proces
infinity, the work done in the slow process in the quasieq

i-
ly
r
s
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librium regime is given by taking the limitDt→` after tak-
ing the infinite waiting time limit of Eq.~2.14!. Since the
integrand, the correlation function, is finite, the order of lim
and integration can be changed. Thus, we can write the w
Ws for the slow process as

Ws /~DH !25 lim
Dt→`

lim
tw→`

W/~DH !2

52
C~0!

2kBT
1

1

kBTE0

1

ds1

dh~s1!

ds1

3E
0

s1
ds2

dh~s2!

ds2
lim

Dt→`

C@~s12s2!Dt#.

~3.1!

Here, in order to give the expression of the workWs , we
introduce the dynamical EA order parameter defined as

q[ lim
t→`

lim
tw→`

C~t1tw ,tw!. ~3.2!

Using Eq.~2.15! and the above definition, the workWs for
the slow process is given by

Ws52
~DH !2

2kBT
@C~0!2q#. ~3.3!

Therefore, the work for the slow process in the quasiequi
rium regime is the difference of a state function, since
right-hand side of Eq.~3.3! is independent of the path o
changing the fieldh(s) and dependent only on the therm
dynamic variables (DH andT) and constants intrinsic to th
system@C(0) andq#. It is important to note that this prop
erty is derived by using only the FDT.

On the other hand, for usual systems apart from gla
systems, one may expect that equilibrium is usually achie
when tw is long (tw→`). So, thermodynamics can be a
plied and the work for the slow process is equal to
change of the Helmholtz free energy,DFeq , calculated by
equilibrium statistical mechanics. However, we show bel
that this naive expectation fails for glassy systems. M
precisely, the work for the slow process, Eq.~3.3!, is differ-
ent from the change of the Helmholtz free energy calcula
by equilibrium statistical mechanics. It is because the gla
systems are out of equilibrium even when the waiting time
infinite.

Assuming thatA(t) is a physical quantity coupled to th
external fieldH(t) linearly, we see from statistical mecha
ics with the assumption of ergodicity that the isothermal s
ceptibility xT is given by

xT5
1

kBT
Š^A2&eq2^A&eq

2
‹J , ~3.4!

where ^•••&eq denotes average over the Gibbs-Boltzma
distribution and^•••&J denotes disorder average. Thus, t
free energy differenceDFeq due to changeDH of the exter-
nal field is
04614
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DFeq52
~DH !2

2kBT
Š^A2&eq2^A&eq

2
‹J , ~3.5!

whereŠ^A&eq
2
‹J is the usual EA order parameter. Since ergo

icity is broken for glassy systems, the phase space dec
poses into many pure states. Assuming that^•••&a denotes
the thermal average in local equilibrium in the pure statea
andFa denotes the free energy at the pure statea, we see that

^A2&eq5(
a

Pa
eq^A2&a , ~3.6!

^A&eq
2 5S (

a
Pa

eq^A&aD 2

, ~3.7!

where Pa
eq is the probability that the system is found

the pure statea in true equilibrium and is given byPa
eq

[exp(2bFa)/Z.
In order to compareWs , Eq. ~3.3!, with DFeq , Eq. ~3.5!,

we rewrite Eq.~3.3! in terms of pure states. Since the corr
lation function is given byC(t,t8)5Š^A(t)A(t8)&‹J and the
local equilibrium in pure states is achieved in the long-tim
limit,

C~0![ lim
t8→`

Š^A~ t8!2&‹J5(
a

Pa
ini
Š^A2&a‹J , ~3.8!

q[ lim
t→`

lim
t8→`

Š^A~t1t8!A~ t8!&‹J5(
a

Pa
ini
Š^A&a

2
‹J ,

~3.9!

wherePa
ini is the probability that the system is found in pu

statea at time 0. Since the system is out of equilibrium
time 0, Pa

eqÞPa
ini . Thus,Š^A2&eq‹J is not equal toC(0). In

addition, from Eqs.~3.7! and ~3.9!, ^^A&eq
2 &J is not equal to

q. Consequently, we conclude that the workWs for the slow
process does not coincide with the free energy differe
calculated by statistical mechanics with assumption of erg
icity.

B. The work when the measurement time is finite

We discuss the properties of the work when the meas
ment time is finite. From Eqs.~2.14! and~3.3!, the difference
between the work when the process is not slow and the w
for the slow process is given by

W2Ws5
~DH !2

kBT E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2

3$C@~s12s2!Dt#2q%. ~3.10!

C@(s12s2)Dt#.q whenDt is finite, since the quasiequilib
rium regime is considered. Hence, the difference from
work for the slow process is positive for any path of chan
ing the field, when the measurement time is finite. This i
plies the principle of minimum work;

W>Ws , ~3.11!
5-5
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where the equality holds only when the measurement tim
infinite, i.e., the slow-process limit.

Our result is very similar to the consequence of therm
dynamics, which tells that the work for nonquasistatic p
cess is larger than the change of the Helmholtz free ene
However, our result is different from that and beyond t
scope of thermodynamics since in our discussion the in
state and the final state of the process are out of equilibr
and the value of the work for the slow process is differe
from the value of change in the Helmholtz free energy
rived by equilibrium statistical mechanics.

C. Long measurement time behavior ofWÀWs

The long measurement time behavior ofW2Ws is ana-
lyzed in this subsection. We show that the behavior ofW
2Ws when the measurement timeDt is long but finite is
determined by the long-time behavior of the correlati
function. We describe below, the results for four types
behavior of the correlation function that include almost
types of relaxation of the correlation, e.g., the exponent
the power law@15#, the logarithmic@16#, and the stretched
exponential relaxation@17#. The derivations are given in th
Appendix.

~1! When the correlation function behaves
lim

t→`
t@C(t)2q#50, the difference is given by

W2Ws.
~DH !2

kBT
K`E

0

1

dsUdh~s!

ds U2 1

Dt
, ~3.12!

where

K`[E
0

`

dt@C~t!2q# ~3.13!

and Ws denotes the work for the slow process. This ca
includes the power law relaxation such thatC(t).q
1ct2a whena.1 and the stretched exponential relaxati
@exp(2atn),0,n,1# as well as the exponential relaxatio
@18#.

~2! When the correlation function behaves
lim

t→`
t@C(t)2q#5c, the difference is given by

W2Ws.
~DH !2

kBT
cE

0

1

dsUdh~s!

ds U2 ln~Dt !

Dt
. ~3.14!

These two results show thatW2Ws is proportional to the
inverse of the measurement time only when lim

t→`
t@C(t)

2q#50. In these two cases, the difference from the work
the slow process takes the minimum value when the fi
increases linearly ash(s)5s, since we assume thatdh(s)/ds
andd2h(s)/ds2 is finite.

~3! When the correlation function obeys the power la
relaxation, such thatC(t).q1ct2a(0,a,1), the differ-
ence is given by
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W2Ws.
~DH !2

kBT
cE

0

1

ds1

dh~s1!

ds1

3E
0

s1
ds2

dh~s2!

ds2

1

~s12s2!a

1

~Dt !a
. ~3.15!

In this case, the difference fromWs obeys the power law
whose exponent is equal to the exponent of the correla
function.

~4! When the correlation function obeys the logarithm
relaxationC(t).q1c/ ln(t), the difference also obeys th
logarithmic relaxation as

W2Wqs5
~DH !2

2kBT

c

ln~Dt !
1OF ln~ ln Dt !

~ ln Dt !2 G . ~3.16!

In this case, the difference does not depend on the pathh(s).
Experimentally, these results tell how long the measu

ment should take and the suitable path of changing the
ternal field in order to determine the value of the work f
the slow process, i.e., the difference of a state function
quasiequilibrium regime.

IV. THE WORK IN THE AGING REGIME:
GENERAL RESULTS

In this section, we discuss the properties of the work
the isothermal slow process when both the waiting time a
the measurement time are long, i.e., in the aging regime
using the modified FDT and aging of the correlation functi
introduced in Eqs.~2.8! and~2.9!. Condition when the work
for the slow process depends on the path changing the e
nal field is obtained. By using the results obtained in t
section, the path dependence of the work for particular s
tems is discussed in Sec. V.

A. Path dependence of the work for the slow process

As shown in Sec. II, in the aging regime the work is
functional of the correlation function that shows aging. T
slow process of the aging regime is given by taking the lo
measurement time limitDt→` with holding the relationtw
;Dt, which guarantees that the slow-process limit is tak
within the aging regime. The slow-process limit has alwa
this meaning in this section.

The order of the slow-process limit and the integrati
can be changed since the susceptibilityx is finite. From Eq.
~2.6! the workWs for the slow process in the aging regime
given by

Ws /~DH !252E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2

3x@ lim
Dt→`
tw;Dt

C~s1Dt1tw ,s2Dt1tw!#.

~4.1!
5-6
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Thus, the dependence of limDt→`
tw;Dt

C(s1Dt1tw ,s2Dt1tw) on

s1 and s2 determines the dependence of the work for
slow process on the path of changing the fieldh(s); Ws is
independent ofh(s) if lim Dt→`

tw;Dt
C(s1Dt1tw ,s2Dt1tw) does

not depend ons1 and s2. On the other hand,Ws is a func-
tional of h(s) if lim Dt→`

tw;Dt
C(s1Dt1tw ,s2Dt1tw) depends on

s1 ands2. We derive conditions whenWs depends onh(s) in
the rest of this section.

In order to analyze limtw;Dt
Dt→` C(s1Dt1tw ,s2Dt1tw), we

clarify the meaning oftw;Dt or the aging regime by using
g(t) in Eq. ~2.9!. By substitution t8→s2Dt1tw , t→(s1
2s2)Dt in Eq. ~2.9!, we see that the following equatio
holds in the region except for the points15s2, which does
not contribute to the value of the work by itself:

lim
Dt→`

m5(s2Dt1tw)/g[(s12s2)Dt]

C~s1Dt1tw ,s2Dt1tw!5Ĉ~m!.

~4.2!

This equation implies that the aging regime is the exp
mental time regime where (s2Dt1tw)/g@(s12s2)Dt# is fi-
nite and the slow-process limit of the correlation function
the integrand in Eq.~4.1! is a function of limDt→`

tw;Dt
(s2Dt

1tw)/g@(s12s2)Dt#.
We discuss below the aging regimes and dependenc

limDt→`
tw;Dt

C(s1Dt1tw ,s2Dt1tw) on s1 ands2 in four cases of

the different long-time behaviors ofg(t) that exhaust all pos
sibilities ~see Fig. 3!.

~1! When lim
t→`

t/g(t)5`, t8/g(t2t8) is finite only in

the regiont8!t2t8. In the region of integration of Eq.~4.1!
except for the points250,

~s2Dt1tw!/g@~s12s2!Dt#→` ~4.3!
r

e
f

04614
e

i-

of

as Dt→` since tw.0. An example of suchg(t) is g(t)
5 ln t. When g(t)5 ln t and s2Þ0, lim

Dt→`
(s2Dt

1tw)/g@(s12s2)Dt#5` as shown in Eq.~4.3!. Since the
point s250 does not contribute to the value of the work b
itself, the experimental time regime where (s2Dt
1tw)/g@(s12s2)Dt# is finite does not exist in this case.
there is no other aging regime except for that characteri
by suchg(t) exists, only the quasiequilibrium regime con
tributes to the value of the work and hence the work for
slow process is independent ofh(s) and is given by
Eq. ~3.3!.

~2! Wheng(t)5t,

s2Dt1tw

g@~s12s2!Dt#
5

s2Dt1tw

~s12s2!Dt
5

s21tw /Dt

s12s2
. ~4.4!

Thus, from Eq.~4.2!, lim Dt→`
m85tw /Dt

C(s1Dt1tw ,s2Dt1tw) is a

function of (s21m8)/(s12s2);

FIG. 3. The schematic illustration of the four types of the lon
time behavior of the functiong(t). For example,g(t)5 ln t ~type
1!, g(t)5t ~type 2!, g(t)5t2 ~type 3!, g(t)5expt ~type 4! are
plotted against 1/t. It is important to note that these four type
exhaust all possibilities of long-time behavior.
lim
Dt→`

m85tw /Dt

C~s1Dt1tw ,s2Dt1tw!5 lim
Dt→`

(s21m8)/(s12s2)5(s2Dt1tw)/g[(s12s2)Dt]

C~s1Dt1tw ,s2Dt1tw!5ĈS s21m8

s12s2
D . ~4.5!
It implies that the aging regime is the region wheretw /Dt is
finite. In this aging regime the slow-process limit of the co
relation function in the integrand of Eq.~4.1! depends ons1
ands2 if f (m) in Eq. ~4.2! is not a constant. It means that th
work for the slow process,Ws , depends on the path o
change of the external field,h(s).

~3! When lim
t→`

t/g(t)50 and lim
t→`

g(t)/g(st)

[gr(s)(s,1) exists,
-
s2Dt1tw

g@~s12s2!Dt#
5

s2Dt1tw

g~Dt !

g~Dt !

g@~s12s2!Dt#

→ tw

g~Dt !
gr~s12s2!, ~4.6!

as Dt→`. An example of suchg(t) is g(t)5ta(a.1).
Wheng(t)5ta (a.1), Eq. ~4.6! holds,
5-7
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s2Dt1tw

g@~s12s2!Dt#
→ tw

g~Dt !

1

~s12s2!a
~4.7!

asDt→`. From Eqs.~4.2! and ~4.6!,

lim
Dt→`

m85tw /g(Dt)

C~s1Dt1tw ,s2Dt1tw!5 lim
Dt→`

m8gr (s12s2)5(s2Dt1tw)/g[(s12s2)Dt]

C~s1Dt1tw ,s2Dt1tw!5Ĉ@m8gr~s12s2!#. ~4.8!
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It implies that the aging regime is the region wheretw /g(Dt)
is finite. In this aging regime the slow-process limit of th
correlation function in the integrand of Eq.~4.1! is a function
of s1 ands2 if f (m) in Eq. ~4.2! is not a constant. It mean
that the workWs depends onh(s).

~4! When lim
t→`

t/g(t)50 and lim
t→`

g(t)/g(st)

5`(s,1), we prove below that the aging regime for expe
mental time scales doesnot exist. We assume that the agin
regime exists. It means that a functionp(t) exists such that
lim

m5tw /p(Dt)
Dt→` (s2Dt1tw)/g@(s12s2)Dt# is finite. Then, from

the condition lim
t→`

t/g(t)50,

lim
Dt→`

m5tw /p(Dt)

s2Dt1tw

g@~s12s2!Dt#
5 lim

Dt→`
m5tw /p(Dt)

tw

g@~s12s2!Dt#

5 lim
Dt→`

mp~Dt !

g@~s12s2!Dt#
. ~4.9!

Assuming thats182s28.s12s2, we see from the condition
lim

t→`
g(t)/g(st)5`(s,1) that

lim
Dt→`

m5tw /p(Dt)

s2Dt1tw

g@~s12s2!Dt#
/ lim

Dt→`
m5tw /p(Dt)

s28Dt1tw

g@~s182s28!Dt#

5 lim
Dt→`

mp~Dt !

g@~s12s2!Dt#

g@~s182s28!Dt#

mp~Dt !

5 lim
Dt→`

g@~s182s28!Dt#

g@~s12s2!Dt#

5`. ~4.10!

Since Eq. ~4.10! contradicts the assumption th
lim Dt→`

m5tw /p(Dt)
(s2Dt1tw)/g@(s12s2)Dt# is finite, the aging re-

gime for experimental time scales doesnot exist in this case.
Hence, if only this aging regime characterized by suchg(t)
exists, limDt→`

tw;Dt
C(s1Dt1tw ,s2Dt1tw) is equal to 0 orq. It

implies that the work is independent ofh(s). An example of
suchg(t) is g(t)5exp(t).

Consequently, we conclude that if there are aging regim
characterized byg(t) of case 2, or case 3, and the functio
Ĉ(m) is not a constant and the FDT violation factorX is not
04614
-

s

equal to 0, the work for the slow process depends on the p
of changing the external fieldh(s). In this case, contrary to
the fundamental assumption of thermodynamics, the w
for the slow process is not the difference of a state functi

V. THE WORK IN THE AGING REGIME: RESULTS FOR
SINGLE-CORRELATION-SCALE SYSTEMS AND

MULTI-CORRELATION-SCALE SYSTEMS

It has been explicitly checked on several disordered m
els that in the long-time limit two situations with differen
dynamical behavior seem to exist@1#.

There are systems with only one correlation scale ap
from the quasiequilibrium regime, which we call ‘‘single
correlation-scale systems.’’ For these systems, the correla
function scales asC(t,t8)5C@j(t)/j(t8)# and the FDT vio-
lation factorX is a constant. Equilibrium states of these sy
tems are solved by a one step replica symmetry break
ansatz. Examples are thep-spin spherical spin glasses@3# and
a Lennard-Jones binary mixture, which is a model of str
tural glasses in a glassy state@9#. The real spin glasses suc
as AgMn seem to belong to this class since it is known t
the correlation function is scaled with single scaling functi
j(t).

There are systems such as Sherrington-Kirkpatrick~SK!
model that have an infinite number of correlation scales a
from the quasiequilibrium regime@4#, which we call ‘‘multi-
correlation-scale systems.’’ For these systems, ultrametri
in time holds for any correlation such thatC(t,t8),q;
C(t1 ,t3)5min@C(t1,t2),C(t2,t3)# when t1.t2.t3 and t3

→`. The FDT violation factorX is a nontrivial function of
C. Equilibrium properties of these systems are solved b
full replica-symmetry breaking ansatz.

In this section, we analyze the path dependence of
work for the slow process in the aging regime for these t
classes of systems by using the general results obtaine
Sec. IV. It is important to note that only these two classes
systems seem to exist@1#.

A. The single-correlation-scale systems

For the single-correlation-scale systems, scaling of
correlation functionC(t,t8)5C@j(t)/j(t8)# holds. Hence,
the work for the slow process in the aging regime is given
5-8
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Ws /~DH !252E
0

1

ds1ḣ~s1!E
0

s1
ds2ḣ~s2!

3xH CF lim
Dt→`
tw;Dt

j~s1Dt1tw!

j~s2Dt1tw!G J . ~5.1!

Three explicit choices of the scaling functionj(t) have been
proposed so far;j(t)5t,j(t)5exp@(t/t0)

12a/(12a)# and
j(t)5exp@lna(t/t0)# @1#. We analyze below the properties o
the work for the slow process for each three cases.

~1! When j(t)5t, the correlation function decays i
power law as found in the trap model@20# and thep-spin
spherical spin glasses@3#. The slow-process limit of the cor
relation function in Eq.~5.1! depends ons1 ands2 as

lim
Dt→`

m5tw /Dt

j~s1Dt1tw!

j~s2Dt1tw!
5

s11m

s21m
. ~5.2!

This is an example of Eq.~4.5! in the preceding section.
~2! Whenj(t)5exp@1/(12a)(t/t0)12a#(a,1) @21#, the

slow-process limit of the correlation function in Eq.~5.1!
depends ons1 and s2 through the scaling function that be
haves as

lim
Dt→`

m5tw /Dt1/a

j~s1Dt1tw!

j~s2Dt1tw!
5expF m

t0
12a

~s12s2!G . ~5.3!

This is an example of Eq.~4.8!.
~3! When j(t)5exp@lna(t/t0)#(a.1) @25#, the slow-

process limit of the correlation function that appears in E
~5.1! depends ons1 ands2 through the scaling function tha
behaves as

lim
Dt→`

m5Dt/(twln12atw)

j~s1Dt1tw!

j~s2Dt1tw!
5exp@am~s12s2!#. ~5.4!

This is another example of Eq.~4.8!
To my knowledge, only three types of the scaling functi

j(t) discussed above are known so far for single-correlati
scale systems. For each of three cases the slow-process
of the correlation function in the integrand of Eq.~4.1! is a
function of s1 and s2. It means for the single-correlation
scale systems that the work for the slow process in the a
regime depends on the path of changing the external fi
h(s) and contrary to the assumption of thermodynamics
work for the slow process is not a difference of a state fu
tion.

In order to see more explicit form of the work for the slo
process in the aging regime, we introduce the modified F
Eq. ~2.8! with constant violation factorX, which has been
verified to be valid for the single-correlation-scale syste
@4#.

From Eq.~2.8!, the susceptibility is given by
04614
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x~ t,t8!52
1

kBTe f f
C~ t,t8!1

q

kBTe f f
2

C~0!2q

kBT
,

~5.5!

whereC(0)[ limt8→` C(t8,t8). Hence, from Eq.~4.1!, the
work for the slow process is given by

Ws /~DH !252
C~0!2q

2kBT
2

1

kBTe f f

3E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2
$q2 lim

Dt→`
tw;Dt

C

3@j~s1Dt1tw!/j~s2Dt1tw!#%. ~5.6!

Since limDt→`
tw;Dt

C(s1Dt1tw ,s2Dt1tw),q when s1Þs2,

the second term on the right-hand side is nonzero. Henc
Te f f is finite the work for the slow process is not the diffe
ence of a state function since the work depends on the
of changing the fieldh(s). In addition, the value of the work
is different from the value of the work for the slow process
the quasiequilibrium regime: the first term on the right-ha
side of Eq.~5.6!. In addition, it is also shown that since th
correlation function is positive and smaller than the dynam
cal EA order parameter in this regime, there are bounds
the value of the quasistatic work as

2
C~0!2q

2kBT
2

q

2kBTe f f
<

Ws

~DH !2
<2

C~0!2q

2kBT
. ~5.7!

Equation~5.7! shows that the workWs in the aging regime is
independent of the path of changing the field and coinci
with the work Ws in the quasiequilibrium regime when th
effective temperatureTe f f is infinite, which holds for the
two-spin spherical spin-glass model@27# and a model of
phase separation@11#.

B. Possibility of observation of path dependence

In the preceding subsection, we saw that the work for
slow process depends on the path of changing the exte
field whenDt;tw . We show here that the path dependen
of the work for the slow process is strong enough to
observed in experiments by evaluating the path depende
of the five-spin spherical spin-glass model.

First, we describe the several pieces of informati
needed to evaluate Eq.~5.6!. It is known that the scaling of
the correlation function, such thatC(t,t8).q(t8/t)g and the
modified FDT with the effective temperature, i.e., Eq.~2.8!,
hold for the model@3#. WhenkBT/J50.2 @28#, g.0.25 has
been obtained. The dynamical EA parameterq and the effec-
tive temperature are given byq.0.929 andT/Te f f.0.227
whenkBT/J50.2. In computation of these values, we use t
formulas:

q3~12q!25
~kBT!2

10
,

T

Te f f
5

3~12q!

q
.

5-9
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In order to evaluate the magnitude of the path dep
dence, we compute the relative difference between the w
for two paths@h(s)5s and h(s)5s2], which is defined as
the difference between the works for the two paths divid
by the average of the two works. The results obtained fr
Eq. ~5.6! are as follows. When the ratio of the measurem
time to the waiting time is1:1, the relative difference is
equal to 0.037, i.e., about 4%. When the ratio is5:1, the
relative difference is equal to 0.094, i.e., about 9%.

Hence, we can say that the path dependence of the w
in the slow process can be observed for the five-spin sph
cal spin-glass model. The relative difference is plott
against the ratio of the waiting time to the measurement t
in Fig. 4. It tells that contrary to intuition the path depe
dence becomes larger, as one increases the measure
time with keeping the waiting time fixed.

C. The multi-correlation-scale systems

For the multi-correlation-scale systems such as SK mo
it is known that the ultrametricity in time holds for all co
relations such thatC(t,t8),q in the long-time limit@4#,

C~ t1 ,t3!5min@C~ t1 ,t2!,C~ t2 ,t3!# when t1.t2.t3 .
~5.8!

By using this ultrametric relation Eq.~5.8!, we prove be-
low that the correlation function in the aging regime is
constant in the two cases~case 2 and case 3 in Sec. IV!
where the work for the slow process can depend on the
of changing the external fieldh(s). Thus, for these two
cases, the work for the slow process is independent of
path h(s). It has been proven in Sec. IV for the other tw
cases that the work for the slow process cannot depen
h(s). Thus, the work for the slow process for the mul
correlation-scale systems is independent of the path
changing the field in all the experimental time regimes.

FIG. 4. The relative difference between the works for the t
paths@h(s)5s andh(s)5s2] of changing the field infinitely slowly
is plotted against the ratio of the waiting time to the measurem
time for the five-spin spherical spin-glass model. The path dep
dence of the work for the slow process in the aging regime is str
enough to be observed in simulations for the model. In addition,
see that the path dependence becomes larger, as one increas
measurement time with keeping the waiting time fixed.
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~1! When g(t)5t, by substitution t1→t,t2→m8t,t3
→mt in Eq. ~5.8! and assuming thatm8.m, we see that

lim
t→`

C~ t,mt !5min@ lim
t→`

C~ t,m8t !, lim
t→`

C~m8t,mt !#.

~5.9!

Hence,

lim
t→`

C~m8t,mt !5 lim
m8t→`

CS m8t,
m

m8
m8t D 5Č~m/m8!,

~5.10!

whereČ(m)[ lim
t→`

C(t,mt). Thus, from Eq.~5.9!,

Č~m!5min@Č~m8!,Č~m/m8!#. ~5.11!

Since it implies that

Č~m!5H Č~m/m8! if m82.m,

Č~m8! otherwise,
~5.12!

Č(m) is a constant and hence limt→`

n5t8/t
C(t1t8,t8)

5Č@n/(11n)# is a constant.
~2! When lim

t→`
t/g(t)50 and lim

t→`
g(t)/g(st)

[gr(s)(s,1) exists, the ultrametric relation Eq.~5.8! is
written as

lim
t→`

m5t8/g(t)

C~t1t8,t8!5min@ lim
t→`

m5t8/g(t)

C~t1t8,t8!,

lim
t→`

m5t8/g(t)

C~at1t8,t8!#, ~5.13!

wherea is a constant such that 0,a,1. The second argu
ment of min in Eq.~5.13! is rewritten as

lim
t→`

m5t8/g(t)

C~at1t8,t8!5 lim
t→`

m5t8/g(at/a)

C~at1t8,t8!

5 lim
t→`

m5t8/g(t/a)

C~t1t8,t8!

5 lim
t→`

m5t8/[gr (a)g(t)]

C~t1t8,t8!

5 lim
t→`

mgr (a)5t8/g(t)

C~t1t8,t8!

[C̄@mgr~a!#, ~5.14!

whereC̄(m)[ lim t→`

m5t8/g(t)
C(t1t8,t8). Similarly, the first ar-

gument of min in Eq.~5.13! is rewritten as
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lim
t→`

m5t8/g(t)

C~t1t8,at1t8!5 lim
t→`

m5(t81at)/g(t)

C~t1t8,at1t8!

5 lim
t→`

m5t8/g(t)

C@~12a!t1t8,t8#

5C̄@mgr~12a!# ~5.15!

where the last equality is shown from Eq.~5.14!. Conse-
quently,

C̄~m!5min$C̄@mgr~12a!#,C̄@mgr~a!#%. ~5.16!

Since gr(a).1, C̄(m)[ lim t→`

m5t8/g(t)
C(t1t8,t8) is a con-

stant.
We proved above only that the correlation function is

constant within a correlation-scale since ultrametricity
time is valid within a correlation scale. On the other han
even for the multi-correlation-scale systems, the value of
correlation function becomes 0 when the time difference
much larger than the waiting time. So, value of the corre
tion function must depend on an infinite number of corre
tion scales. Hence, there is possibility that there is an infi
number of experimental time regimes characterized by
ferent values of the work for the slow process.

VI. DISCUSSION AND CONCLUSIONS

Summarizing our results, for systems with aging we ha
considered the experimental time scale dependence of
work exerted by modulating the external field in an isoth
mal process. We have shown that there are two experime
time regimes characterized by different behavior of the wo
In the quasiequilibrium regime (Dt!tw), the work for the
slow process is independent of the path of changing the
ternal field and the value of the work for the slow process
different from the change of the Helmholtz free energy o
tained by statistical mechanics with the assumption of erg
icity. When the process is not infinitely slow, the differen
between the work for nonslow process and the work for
slow process is positive for any path of changing the fie
i.e., the principle of minimum work holds. In addition, w
derived the dependence of the difference on the measure
time from the long-time behaviors of the correlation fun
tion.

In the aging regime (Dt;tw), whose precise meaning i
given in Sec. IV, contrary to a fundamental assumption
thermodynamics, the work exerted in the slow process on
single-correlation-scale systems for which the FDT violat
factorX is not equal to 0 depends on the path of changing
external field. It was examined that for the five-spin spheri
spin-glass model the magnitude of the path dependenc
strong enough to be observed in experiments. The condit
when the work for the slow process depends on the pat
also derived generally. On the other hand, for the mu
correlation-scale systems, the work for the slow proces
independent of the path of changing the field. However,
work for the slow process still may depend on history o
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system since there is possibility that there is an infinite nu
ber of experimental time regimes characterized by differ
values of the work for the slow process. In order to attack
this problem, information on time scale of the aging regim
of multi-correlation-scale systems beyond time reparame
zation invariance is necessary@29#.

It is important to note that these results have a mu
broader range of validity, because they were derived with
any assumption on microscopic properties of a system.

We consider the implications of our results on thermod
namics for systems with aging. In the quasiequilibrium
gime, our results are the same as the consequences of
modynamics, where the work for the slow process
independent of the path of changing the external field and
work for a nonslow process is larger than that for the sl
process. The only discrepancy is the difference between
value of the work for the slow process and that of the fr
energy obtained by statistical mechanics with the assump
of ergodicity. However, this discrepancy does not mean t
the framework of usual thermodynamics is invalid since
free energy can be defined by the work for the slow proce
This suggests that the usual framework of thermodynamic
valid in the quasiequilibrium regime even though the syst
is out of equilibrium.

We considered only the properties of the work in the l
ear response regime. Thus, in order to prove validity of us
thermodynamics in the quasiequilibrium regime, the relat
between the heat and the entropy has to be considered
extension of our analysis outside the linear response reg
has to be performed. For these purposes, it would be in
esting to analyze Langevin dynamics of spin-glass mod
with stochastic energetics@19,30#.

Since the work for the slow process in the quasiequil
rium regime is independent of history of a system in line
response regime, it gives a fundamental state function
thermodynamics in the quasiequilibrium regime and is wo
being measured in experiments. We discussed an experim
to measure it. Our results in Sec. III for the measurem
time dependence of the work shows how long measurem
time is needed to reach the expected accuracy.

However, since the waiting time can be long but shou
be finite in reality, the measurement time has to be finite
order to keep the experimental time scale in the quasie
librium regime. Otherwise the value of the work does n
come close to that of the work for the slow process in
quasiequilibrium regime since the experimental time scal
in the aging regime. Hence, one cannot expect that the v
of the measured work coincides with that of the work for t
slow process with arbitrary accuracy. In other words,
accuracy of measurement of the state function is bounde
the length of the waiting time.

On the other hand, in the aging regime, our results im
that in contrast to the usual framework of thermodynamic
is essential to consider the experimental time scales suc
the waiting time and the measurement time. Furthermo
history of a system as a state variable is necessary to des
thermodynamic properties of glassy materials. Although c
structing thermodynamics for the aging regime is a tou
work, it is a fruitful and challenging problem to be invest
5-11
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gated since some universal properties in the aging regime
known@5#. Recently, a framework of thermodynamics for t
aging regime when the temperature changes in time has
proposed@31#. The framework avoids treating the problem
path dependence by fixing a path to change the tempera
It is not clear whether thermodynamics for a single path
change the temperature is useful. Its validity and usefuln
should be checked.
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APPENDIX: DERIVATION OF THE LONG
MEASUREMENT TIME BEHAVIOR OF WÀWs

In this appendix, we derive the long measurement ti
behavior of the deviation from the work for the slow proce
for four types of relaxation of the correlation function d
scribed in Sec. III C.

1. The case where lim
t\`

t†C„t…Àq‡ exists

In this section, we treat the case where lim
t→`

t@C(t)

2q# exists, which includes the two cases whe
lim

t→`
t@C(t)2q# is equal to 0 and where the limit is equ

to a finite valuec.
We rewrite the deviation given by Eq.~3.10! by introduc-

ing K(t) defined as

K~ t ![E
0

t

dt@C~t!2q#. ~A1!

The deviation is reduced to

kBT

~DH !2
~W2Wqs!5

1

DtE0

1

ds1

dh~s1!

ds1
Fh8~0!K~s1Dt !

1E
1

s1
ds2h9~s12s2!K~s2Dt !G .

~A2!

At first, we consider the deviation when lim
t→`

t@C(t)

2q# is equal to 0. Here, in order to prove that the deviat
is proportional to the inverse of the measurement timeDt,
we show that the proportional constant is finite. The prop
tional constant is given as
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lim
Dt→`

Dt
kBT

~DH !2
~W2Wqs!

5 lim
Dt→`

E
0

1

ds1

dh~s1!

ds1
Fh8~0!K~s1Dt !

1E
0

s1
ds2h9~s12s2!K~s2Dt !G . ~A3!

Since lim
t→`

K(t) exists in the case,K(t) is finite. Hence,

the order of the limitDt→` and the integration can b
changed. Thus, the proportional constant is given by

lim
Dt→`

Dt
kBT

~DH !2
~W2Wqs!5K`E

0

1

dsUdh~s!

ds U2

, ~A4!

whereK` is defined by Eq.~3.13!. Consequently, it is proved
that the proportional constant is finite and the deviation
proportional to 1/Dt.

Next, we consider the deviation when lim
t→`

t@C(t)

2q# is equal to a finite valuec. In order to prove that the
deviation is proportional to lnDt/Dt, we show that the pro-
portional constant is finite. Dividing the region of integratio
of Eq. ~A2! into five regions, the proportional constant
given by

lim
Dt→`

Dt

ln Dt

kBT~W2Wqs!

~DH !2

5 lim
Dt→`

1

ln Dt Fh8~0!E
0

1/Dt

ds1h8~s1!K~s1Dt !

1h8~0!E
1/Dt

1

ds1h8~s1!K~s1Dt !

1E
0

1/Dt

ds1h8~s1!E
0

s1
ds2h9~s12s2!K~s2Dt !

1E
1/Dt

1

ds1h8~s1!E
0

1/Dt

ds2h9~s12s2!K~s2Dt !

1E
1/Dt

1

ds1h8~s1!E
1/Dt

s1
ds2h9~s12s2!K~s2Dt !G .

~A5!

We discuss the behavior of the functionK(sDt) in each
region. Whens<1/Dt, from the definition of K(t), Eq.
~3.13!, it is shown that

K~sDt !<E
0

1

dt@C~t!2q#. ~A6!

Thus,K(sDt) is finite even whenDt→`. On the other hand
when s.1/Dt, we express the functionK(sDt) by using a
function defined asC(t)2q[c/t1 f (t), t>1:
5-12
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K~sDt !5E
0

sDt

dt@C~t!2q#

5E
0

1

dt@C~t!2q#1E
1

sDt

dtFc

t
1 f ~t!G

5E
0

1

dt@C~t!2q#1c ln s1c ln Dt1E
1

sDt

dt f ~t!.

~A7!

Since lim
t→`

t f (t)50, the fourth term on the right-hand sid

is finite even whenDt is infinite. Thus, the behavior of th
function is given asK(sDt).c ln Dt when s.1/Dt. By
evaluating the each term of Eq.~A5! with using the above
behavior of the functionK(sDt), it is straightforward to
show that

lim
Dt→`

Dt

ln Dt

kBT

~DH !2
~W2Wqs!5cE

0

1

dsUdh~s!

ds U2

. ~A8!

Consequently, it is proved that the proportional constan
finite.

2. The case where lim
t\`

t†C„t…Àq‡ does not exist

In this section, we treat the case where lim
t→`

t@C(t)

2q# does not exist, which includes the two types of lon
time behavior of the correlation function, such thatC(t)
.q1c/ta, 0,a,1 andC(t).q1c/ ln t.

In order to find out the leading term in the behavior f
the long measurement time, we divide the region of integ
tion of Eq. ~3.10! into three regions as

E
0

1

ds1E
0

s1
ds25E

0

(Dt)2a

ds1E
0

s1
ds2

1E
(Dt)2a

1

ds1E
s12(Dt)2a

s1
ds2

1E
(Dt)2a

1

ds1E
0

s12(Dt)2a

ds2 , ~A9!

where we assume that the parametera satisfies 0,a,1.
Since all the integrands~the time derivative of the field and
the correlation function! are finite, it can be shown that th
first two terms on the right-hand side are bounded as

uthe first termu<const3~Dt !22a

and

uthe second termu<const3~Dt !2a@12~Dt !2a#.

In addition, we notice that sinces2<s12(Dt)2a in the re-
gion of integration of the third term, (s12s2)Dt is large
when the measurement timeDt is large. Thus, the third term
is determined by the long-time behavior of the correlat
function.
04614
is

-

-

At first, we treat the case where the correlation functi
behaves at a long-time asC(t).q1c/t2a,0,a,1. We
divide the region of integration of the third term of Eq.~A9!
into three regions as

E
(Dt)2a

1

ds1E
0

s12(Dt)2a

ds25E
0

1

ds1E
0

s1
ds2

2E
0

(Dt)2a

ds1E
0

s1
ds2

2E
(D)2a

1

ds1E
s12(Dt)2a

s1
ds2 .

~A10!

Since all the integrands are finite, it is shown that the last t
terms are bounded by

uthe second termu<const3~Dt !2a(22a)2a

and

uthe third termu<const3~Dt !2a2a(12a).

On the other hand, by using the long-time behavior of
correlation function, the first term is given as

E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2

c

~s12s2!a

1

~Dt !a
.

~A11!

Thus, we find that this term isO@(Dt)2a#. Assuming that the
free parametera is larger than the exponenta, one sees tha
the leading term is Eq.~A11! by comparing the orders of al
the terms in Eqs.~A9! and~A10!. Hence, the long measure
ment time behavior of the deviation is given by Eq.~3.15!.

Next, we consider the case where the long-time beha
of the correlation function is given byC(t).q1c/ ln t.
Again, we start by evaluating the third term on the right-ha
side of Eq. ~A9!. By using the long-time behavior of th
correlation function, the term is given by

E
(Dt)2a

1

ds1

dh~s1!

ds1
E

0

s12(Dt)2a

ds2

dh~s2!

ds2

3
c

ln ~s12s2!1 ln Dt
. ~A12!

Since in the region of integration the following inequali
holds:

U ln~s12s2!

ln Dt U<a,

by neglecting numbers ofO(a/ ln Dt) the third term of the
right-hand side of Eq.~A9! is reduced to

E
(Dt)2a

1

ds1

dh~s1!

ds1
E

0

s12(Dt)2a

ds2

dh~s2!

ds2

c

ln Dt
.

~A13!
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Furthermore, by neglecting numbers ofO@(Dt)2a/ ln Dt#, the
term is reduced to

E
0

1

ds1

dh~s1!

ds1
E

0

s1
ds2

dh~s2!

ds2

c

ln Dt
5

c

2lnDt
. ~A14!

Consequently, one sees that the leading term is the ab
one by comparing the orders of all the terms in Eqs.~A9! and
~A10!. Thus, the long measurement time behavior of the
viation is given by Eq.~3.16!.

Finally, in order to determine the order of the neglect
term we determine the value of the free parametera, since
the neglected term contains the free parametera. Since in
M
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terms of a the order of the neglected terms are given
O(a/ ln Dt) andO@(Dt)2a#, we can determine the value ofa
so that the value of the neglected terms are minimized. Th
assuming that the neglected term is given byaa/ ln Dt
1b(Dt)2a where a and b are constants, the value ofa is
determined by

d

da Fa a

ln Dt
1b~Dt !2aG50. ~A15!

Since the solution isa.2 ln(lnDt)/ln Dt, one sees that the
order of neglected term isO@ ln(ln Dt)/(ln Dt)2# as shown in
Eq. ~3.16!.
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